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Single Machine With Wiener Increment Yield: Optimal
Offline Control

Konstantin Kogan and Sheldon Lou

Abstract—In many manufacturing systems prone to random interfer-
ence, such asmachine breakdowns and fluctuating yield, information about
the interference as well as other system states, e.g., inventory levels, may
not be available in a timely manner. Therefore an online feedback control
will be difficult to implement, and a good offline control strategy may be
the only alternative. In this note we develop such a strategy for a produc-
tion system with random yield, which is characterized by aWiener process.
Assuming the initial inventory level is known, we derive closed form expres-
sions of the optimal production control to minimize the expected inventory
and backlog costs over a production horizon.

Index Terms—Maximum principle, offline control, random yield.

I. INTRODUCTION

The stochastic production control in a product defect or machine
failure prone environment is typically considered the prerogative of
real-time or online approaches (see, for example, pioneering work of
Kimemia [6], Kimemia and Gershwin [7], and Akella and Kumar [1]).
The optimal production rate u(t), which minimizes the expected inven-
tory holding and backlog costs, is usually a function of the inventory
X(t). To prove the optimality of the control, certain assumptions will
have to be asserted, e.g., the observability of the inventory level and
machine states, and notably the Markovian supposition that stipulates
that the transition between an operational state to a breakdown state of
the machine is described by a continuous-time Markov chain.

Unfortunately, in certain manufacturing systems, the information
about either machine states or inventory levels may at best be impre-
cise, if not unobtainable. One example is the chip fabricating facility,
where yield or machine breakdowns are due to complex causes which
are difficult to identify. The system, like many modern ones, could
continue producing at the same rate even when it has been malfunc-
tioning, because it is the part inspection, at a much later stage of the
production, that will eventually unveil the culprits.

It is also commonplace in some production systems that inventory
levels are not obtainable continuously. This reality, in conjunction with
the often ambiguous machine states described above, warrants the ex-
ploration of an offline control methodology, which provides a better
system management when the above-mentioned information is absent.

Such an optimal offline control scheme is developed in this note for
a production system with random yield and constant demand. Random
yields in various forms have been considered by many authors. Com-
prehensive literature reviews on stochastic manufacturing flow control
and lot sizing with random yields or unreliable machines can be found
in Haurie [4] and Yano and Lee [12]. In addition, make-to-order batch
manufacturing with random yield is considered by Gerchak and Gros-
feld-Nir (1998) andWang andGerchak [11]. In these papers it is proven
that the optimal policy is of threshold control type—stop if and only if
the stock is larger than some critical value. Gerchak and Grosfeld-Nir
(1998) develop a computer program for solving the problem of bino-
mial yields, while Wang and Gerchak [11] study the critical value for
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different production cases. The optimal control derived in this note is
significantly different from the traditional threshold control expected
under the Markovian assumption, which alternates between zero and
the maximum production rate. Indeed, the production rate is not nec-
essarily maximal when the expected inventory level is less than the
critical valueX�, nor is it necessarily zero when the inventory level is
larger than X�.

II. PROBLEM STATEMENT

Consider a single machine, single part-type production system with
random yield characterized by aWiener process. Similar to theWiener-
increment-based stochastic production models [4], the inventory level
X(t) is described by the following stochastic differential equation:

dX(t) = Pdt+ �d�(t) u(t)�Ddt (1)

where X(0) is a given deterministic initial inventory and u(t) is the
production rate

0 � u(t) � U (2)

P , 0 < P < 1(U > D=P ), is the average yield—the proportion of
the good parts produced, �(t) is a Wiener process, � is the variability
constant of the yield, d�(t) is the Wiener increment, andD is the con-
stant demand rate.

Similar to Shu and Perkins [10] and Khmelnitski and Caramanis [5],
we consider a quadratic inventory cost which is incurred when either
X(t) > 0 (inventory surplus), or X(t) < 0 (shortage). The objective
of the production control is to minimize the overall expected inventory
cost

J = E

T

0

X2(t)dt (3)

subject to (1) and (2), where T is the planning horizon during which
the state of the system can be evaluated.

III. EQUIVALENT DETERMINISTIC FORMULATION

To find the optimal offline control, we introduce an equivalent deter-
ministic formulation.
Lemma 1: Problem (1)–(3) is equivalent to minimizing

J =

T

0

X(0)�Dt+ P

t

0

u(s)ds

2

+ �

t

0

u2(s)ds dt (4)

subject to (2), where � = �
2

.
Proof: Integrating (1), we have

X(t)=X(0)�Dt+

T

0

Pu(s)ds+

T

0

�u(s)d�(s) (5)

which leads to

X2(t)=[X(0)�Dt]2+2 [X(0)�Dt]L(t)+[L(t)]2 (6)
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where L(t) =
t

0
Pu(s)ds +

t

0
�u(s)d�(s). Using the fact that the

expectation of the stochastic (Ito) integrals is zero, we obtain

E X2(t) = [X(0)�Dt]2 + 2 [X(0)�Dt]

t

0

Pu(s)ds

+E

t

0

Pu(s)ds+

t

0

�u(s)d�(s)

2

: (7)

With respect to the Ito isometry, E[
t

0
A(� )dW (�)]2 =

t

0
E[A2(� )]d� [8], the last term in (7) can be rewritten as

E

t

0

Pu(s)ds+

t

0

�u(s)d�(s)

2

= E

t

0

Pu(s)ds

2

+ 2

t

0

Pu(s)ds

t

0

�u(s)d�(s)

+

t

0

�u(s)d�(s)

2

= P 2

t

0

u(s)ds

2

+ �
2

t

0

u2(s)ds:

Therefore, we have

J =E

T

0

X2(t)dt

=

T

0

E X2(t) dt

=

T

0

[X(0)�Dt]2 + 2 [X(0)�Dt]P

t

0

u(s)ds

+P 2

t

0

u(s)ds

2

+ �
2

t

0

u2(s)ds dt:

Finally, by rearranging the terms in the last expression and using � =

�
2

, we arrive at (4).
We use the maximum principle to solve the problem [9]. Note that

the objective function (4) is a summation of strictly convex functions.
This implies that the problem has a unique optimal solution.

The objective function (4) contains integrals over independent vari-
able t, thus it does not satisfy the canonical optimal control formulation
needed for using the maximum principle. Hence, we introduce the ex-
pected inventory, XE(t), which satisfies

_XE(t) = Pu(t)�D; XE(0) = X(0) (8)

and the cumulative quadratic control, Y (t), which satisfies

_Y (t) = u2(t); Y (0) = 0: (9)

Then the objective function (4) takes the following form:

J =

T

0

X2

E(t) + �Y (t) dt! min : (10)

Formulation (2), (8)–(10) is canonical. According to the maximum
principle, the controlu(t)whichmaximizes the HamiltonianH(t) sub-

ject to constraint (2) is optimal for (8)–(10), and thus is optimal for the
original problem. The Hamiltonian is defined as

H(t) = �X2

E(t)��Y (t)+ X(t) (Pu(t)�D)+ Y (t)u
2(t) (11)

where the costate variables  X(t) and  Y (t) satisfy the following
costate equations

_ X(t) = 2XE(t);  X(T ) = 0; (12)
_ Y (t) =�;  Y (T ) = 0: (13)

IV. TWO SPECIAL CASES OF THE OPTIMAL SOLUTION

As delineated here, depending upon the level of the initial inventory
X(0), different optimal control formulations will have to be employed.
The formulations are, unfortunately, rather involved, and their proofs
convoluted. To make the results more comprehensible, we will start off
by proving two special cases.

A. The First Special Case: X(0) � DT

In this case, the initial inventory is large enough to meet the demand
for the entire planning horizon T . Therefore, the optimal policy, as one
expects, is not to produce at all.
Lemma 2: IfX(0) � DT , then u(t) = 0, 0 � t < T is optimal.

Proof: Since XE(0) � DT means XE(t) = X(0) +
t

0
(Pu(�)�D)d� > 0, we have _ X(t) = 2XE(t) > 0, 0 � t < T .

But  X(T ) = 0, therefore  X(t) < 0 and  Y (t) < 0, 0 � t < T
(see (12) and (13), respectively). Therefore u(t) = 0, 0 � t < T
maximizes (11) and thus optimal.

B. The Second Special Case: X(0) is Moderately Large, but
X(0) < dt

As shown in Theorem 1, given two critical values,X� = ��D=P 2

and X̂ which can be evaluated through equations depending on the
system and initial conditions, X̂ > X�, we will have a three-phase
control when X̂ > X(0) � X� [see Fig. 1(a)]. Initially the optimal
production rate u(t) is zero, and thus the average inventory levelXE(t)
decreases. This is the first phase, which is identical to the control in the
first special case. At a time point t (a certain level of XE(t), X̂ >
XE(t ) > X�), the optimal u(t) becomes positive but is still small
enough so that XE(t) continues its decline. This is the second phase.
Finally, as soon asXE(t) reaches a critical value,X�, (this time point
is referred to as tO), the optimal u(t) becomes a constant, u�(t) =
D=P and from that point on XE(t) and u�(t) will remain to be X�

andD=P , respectively. This is the third phase during which the system
enters the steady state. The optimal control whenX(0) is smaller than
X� is the mirror image of the described control (see Fig. 1(b)) and
therefore is not considered in the note. On the other hand, if DT >
X(0) � X̂ , then the optimal control will include only the first two
phases. Note, that the proofs of the equation for X̂ and the existence of
tO when X̂ > X(0) � X�, which utilize the asymptotic behaviors of
the family of Bessel functions, are tedious and therefore excluded. To
prove Theorem 1, we first need to establish the following lemma.
Lemma 3: Assume functions  (t), X(t) and u(t) =
0;  (t) < 0

(P (t))=(2�(T � t));  (t) � 0
satisfy _X(t) = Pu(t)�D and

_ (t) = 2X(t) for 0 � t � T where � > 0, P > 0 and D > 0 are
constants. Furthermore, assume  (T ) = 0, X(0) > X = ��D=P 2

andX(t0) = X for some t0, 0 � t0 � T andX(t) 6= X , 0 � t < t0.
Then

1)  (t) � �2X(T � t), 0 � t � t0;
2) X(t) = X and  (t) = �2X(T � t) for t0 � t � T .
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Fig. 1. Optimal behavior of the system for (a) X(0) > X and (b) X(0) < X .

Proof: We first show that  (t) < �2X(T � t), 0 � t < t0.
Since X(0) > X , X(t0) = X and X(t) 6= X , 0 � t < t0, we must
have X(t) > X , 0 � t < t0. Thus, there is a t00, t00 < t0, such that
_X(t) = Pu(t)�D < 0 for t00 � t < t0. Therefore, u(t) < (D=P ),
t00 � t < t0, which leads to

 (t) < �2X(T � t) for t00 � t < t0: (14)

If  (�t) > �2X(T � �t) for some �t, 0 � �t < t00, then because _ (t) =
2X(t) > 2X for 0 � t < t0, we would have  (t00) > �2X(T � t00).
However, this contradicts (14). Therefore,  (t) < �2X(T � t), for
0 � t < t0.

We now show that  (t0) = �2X(T � t0). Assume the opposite
were true, that is,  (t0) < �2X(T � t0). Thus, u(t0) < (D=P ) and
_X(t0) < 0. Therefore, there would exist a t000 , t0 < t000 < T such
that X(t) < X for t0 < t � t000. Thus, _ (t) = 2X(t) < 2X and
 (t) < �2X(T � t) for t0 < t � t000 .

Furthermore, there would exist a t�, t0 < t� � T , such thatX(t�) =

X , otherwise X(t) < X and, thus, _ (t) = 2X(t) < 2X and
 (t) < �2X(T � t) for t0 < t � T . This implies  (T ) < 0, which
contradicts the assumption that  (T ) = 0. Since X(t�) = X and
X(t000) < X , there would be a t1, t000 < t1 � t� such thatX(t1) = X
and X(t) < X for t000 � t < t1. Therefore, _ (t) = 2X(t) < 2X
and, thus, (t) < �2X(T�t),u(t) < (D=P ), and finally _X(t) < 0,
for t000 < t < t1. Since X(t000) < X , we would have X(t1) < X .
However, this contradicts the assumption thatX(t1) = X . Therefore,
we must have  (t0) = �2X(T � t0).

We now show thatX(t) = X and (t) = �2X(T�t) for t0 � t �
T by contradiction. Assume there existed some �1 and �2, t0 < �1 <
�2 < T such that X(t) = X for t0 � t � �1, and X(t) 6= X for
�1 < t � �2. This would mean that _X(t) 6= 0 at t = �1. However,
X(t) = X for t0 � t � �1 and  (t0) = �2X(T�t0) should result in
_ (t) = 2X ,  (t) = �2X(T � t), u(t) = D=P and, thus, _X(t) = 0

for t0 � t � �1 which contradicts _X(t) 6= 0 at t = �1. Therefore, we
must haveX(t) = X and  (t) = �2X(T � t) for t0 � t � T .
Theorem 1: Let X̂ > X(0) � X� = ��D=P 2 and A, B, t	, tO

satisfy the following equations:

AI0 2 C(T�t )

+BK0 2 C(T�t ) =
2 (X(0)�Dt �X�)p

C
(15)

AI1 2 C(T�tO)

+BK1 2 C(T�tO) =0 (16)

AI1 2 C(T�t )

+BK1 2 C(T�t ) =2X� T�t (17)

X� =X(0)�Dt +P 2

2�

� Ap
C

I0 2 C(T�t ) �I0 2 C(T�tO)

� Bp
C

K0 2 C(T�t ) �K0 2 C(T�tO) ;

(18)

X̂ =X�+Dt 
I0(2

p
CT )

I0(2
p
CT )+I0( C(T � t ))�2

(19)

where C = P 2=�. Define (20), as shown at the bottom of the page,
where In(z) is the Modified Bessel function of the first kind of order n
and Kn(z) is the Bessel function of the second kind of order n (Neu-
mann function).

 X(t)=

T�t � AI1 2 C(T�t ) +BK1 2 C(T�t ) �2X�(T�t )�2X(0)(t �t)+D t2 �t2 ; 0�t<t 
p
T�t� AI1 2 C(T�t) +BK1 2 C(T�t) �2X�(T�t); t �t<tO

�2X�(T�t); tO�t�T
(20)
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Then

u(t) =
0; 0 � t < t ,

P (t)
2�(T�t)

; t � t � T (21)

is optimal.
Proof: In order to show the optimality of u(t), we need to prove

that

i) _ X(t) = 2XE(t) and  X(T ) = 0;
ii) u(t) is feasible;
iii) u(t) and  X(t) maximize the Hamiltonian (11).

First, note that according to (8) and (21), XE(t) = X(0) � Dt for
0 � t < t . Then, from (20) we find

_ X(t)=2 (X(0)�Dt)=2XE(t); for 0�t<t : (22)

Next,  X(t), t � t < tO satisfies the following differential equation
[3]:

� X(t)� P 2  X(t)

�(T � t)
= �2D (23)

which with respect to (8) and (21) can be rewritten as

� X(t)=2Pu(t)�2D=2 _XE(t) for t �t<tO : (24)

Thus, from (22) and (24), we have

_ X(t) = 2XE(t) for 0 � t < tO:

For tO � t � T , substituting (20) into (21) leads to u(t) = D=P .
Thus, Pu(t) � D = _XE(t) = 0, which results in XE(t) = X� for
tO � t � T . Differentiating (20), we show that 2XE(t) = 2X� =
_ X(t). Finally, it is easy to verify that  X(T ) = 0. Therefore, i) is
proven.

Let us now show u(t) is feasible, that is, 0 � u(t) � U . First, it can
be shown that XE(tO) = X� [(18)–(20)],  X(tO) = �2X�(T �
tO) [(16) and (20)], as well as,  X(t), XE(t) and u(t) satisfy the
remaining conditions of Lemma 3. According to that lemma,  X(t) �
�2X�(T � t) for 0 � t � tO . Thus,  X(t) � �2X�(T � t) and
therefore u(t) � (D=P ) < U for 0 � t � T , which yields _XE(t) �
0, 0 � t � T . Assume XE(0) > 0 (in fact, this is ensured by the
existence of t	). Since XE(t) is nonincreasing and X� < 0, there
must be a tX < tO , such that XE(tX) = 0. Therefore, XE(t) � 0
and, thus, _ X(t) = 2XE(t) � 0, tX � t � T and _ X(t) > 0, 0 �
t < tX . Considering  X(T ) = 0, we have  X(t) � 0, tX � t � T .
Thus t	 < tX . Also  X(t) < 0, 0 � t < t	, and  X(t) � 0,
t	 � t � T . Taking (21) into account, we conclude that 0 � u(t)
for 0 � t � T . Combining this with the fact u(t) � (D=P ) < U

for 0 � t � T that we have just proven, we conclude that u(t) is
feasible.

Finally, it is easy to observe, that u(t) and X(t) determined by (20)
and (21) maximize the Hamiltonian (11).

V. A DESCRIPTION OF THE OPTIMAL CONTROL

The optimal control whenX(0) � X� is dependent upon the initial
inventory X(0) in the following manner.

Case 1) X(0) � DT , u�(t) = 0, 0 � t � T . This is the first
special case in the last section. Only the first phase of the
three-phase control is used.

Case 2) DT > X(0) � X̂ . The optimal control is defined as
shown in (25) and (26) at the bottom of the page, and A
and t	 are obtained by solving the following equation:

AI1 2 C(T�t ) �2X� T�t =0;

AI0 2 C(T�t =
2 (X(0)�Dt �X�)p

C
: (27)

This case has the first two phases described in Theorem
1: Initially u�(t) = 0 when t < t	 and then u�(t) be-
comes positive, but still small enough so that the average
inventory levelXE(t) continues declining. Since the ini-
tial inventory is relatively large, XE(t) will never reach
the critical value X� and thus the third phase of the con-
trol will not be entered.

Case 3) X̂ > X(0) � X�. We have the second special case de-
termined by Theorem 1 with a three-phase control, which
is illustrated in Fig. 1(a).

Note that the proof of Case 2) is very similar to that of
Theorem 1 and thus omitted.

VI. CONCLUSION

An optimal offline control scheme is developed in this note for a pro-
duction system with random yield and constant demand. Depending
upon the initial inventory level, the optimal control may have up to
three phases. In the first phase, the optimal production rate is either at
its maximum or its minimum, like in the traditional threshold control.
The optimal production rate in the second phase is determined by a
set of complex nonlinear equations containing Bessel functions. In the
third phase, similar to the traditional threshold control, the system en-
ters a steady-state characterized by a constant production rate inversely
proportional to the expected yield.
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 X(t) =
A T � t � I1 2 C(T � t ) + 2D

C
(T � t )� 2X(0)(t � t) +D t2 � t2 ; 0 � t < t 

A
p
T � t � I1 2 C(T � t) + 2D

C
(T � t); t � t � T

(25)

u�(t) =
0; 0 � t < t	,

P (t)
2�(T�t)

; t	 � t � T
(26)
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Task-Space Adaptive Setpoint Control for Robots With
Uncertain Kinematics and Actuator Model

Chao Liu and Chien Chern Cheah

Abstract—In this note, the adaptive setpoint control problem of robotic
manipulators in the presence of uncertainties in both kinematics and actu-
ator model is addressed. Two new task-space control methods are proposed
to overcome the uncertainties. Sufficient conditions for choosing the feed-
back gains, estimated Jacobian matrix and estimated actuator model are
provided to guarantee system stability. Experimental results are presented
to verify the practical feasibility of the proposed control methods.

I. INTRODUCTION

A great many control schemes for robotic manipulators have been
developed in literature during the past few decades. In many of these
control methods [1]–[6], the controller is designed in joint space. Since
for most applications of robotic manipulators the desired position or
path is specified in task space, one principle limitation associated with
these joint-space control methods is that the desired joint position or
path must be obtained by solving the inverse kinematics. To avoid
the problem of solving inverse kinematics, Takegaki and Arimoto
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[7] proposed a task-space controller for setpoint control in Cartesian
space using a transposed Jacobian matrix. Many other task-space
control schemes are proposed later [8]–[11]. To apply these task-space
control schemes, exact knowledge of the Jacobian matrix from joint
space to task space is required. If uncertainties exist in the kinematics,
these controllers [1]–[11] may give degraded performance and may
incur instability. To deal with the problem of uncertain kinematics,
Cheah et al. [12]–[14] proposed several task-space feedback laws with
uncertain kinematics from joint space to task space.

However, most control methods proposed in literature, including the
control methods previously mentioned [1]–[14], are designed at the
torque input level and the actuator part is neglected. As shown by Good
et al. [15], the actuator model constitutes an important part of the com-
plete robot system andmay cause detrimental effects when neglected in
the design procedure. Recently, actuator dynamics has been explicitly
included in control schemes and some research work has been devoted
to deal with this problem as can be found in [16]–[25]. However most
of these control schemes are designed in joint space and exact kine-
matics information is assumed to be known. To our knowledge, no re-
sult has been proposed for task-space setpoint control with the presence
of uncertainties in both kinematics and actuator model. The main the-
oretical challenge of this control problem is to guarantee the stability
of closed-loop system in the presence of both kinds of uncertainties
without invoking overparameterization method which is often used to
deal with multiple uncertainties in system. In this note, we propose a
new regressor construction concept using online updating information
of the adaptive parameters. Based on the novel adaptive regressor pro-
posed, two task-space controllers are developedwhich can deal with the
uncertainties in kinematics and actuator model at the same time. The
proposed schemes do not need accurate information about the actuator
model, dynamics and kinematics of the robot system except the gravity
regressor matrix. And compared with the existing results in literature,
the dimension of the closed loop system is lower and the controller
structure can be greatly simplified especially when degree of freedom
of the robot increases since the two kinds of uncertainties are dealt with
separately and simultaneously through the novel regressor proposed.
Sufficient conditions revealing the coupling effects of uncertain actu-
ator model and kinematics on system stability are provided and are
illustrated in a three-dimensional (3-D) figure. It is shown by means
of experiments that the proposed controllers are practically applicable
and systematic tuning procedure of the control gains is provided.

II. ROBOT KINEMATICS AND DYNAMICS

In order to describe a task for the robot manipulator, the desired path
for the end effector is usually specified in task space. Let X 2 Rm

represents the position vector of the manipulator in task space defined
by [9], [12]

X = h(q) (1)

where q 2 Rn is a vector of generalized joint coordinates, h( � ) 2
Rn ! Rm (m � n) is generally a nonlinear transformation de-
scribing the relation between the joint and task space. The velocity
vector _X is therefore related to _q as

_X = J(q) _q (2)

where J(q) 2 Rm�n is the Jacobian matrix of mapping from joint
space to task space. Note that if the robot’s kinematics is uncertain, the
Jacobian matrix becomes uncertain too.
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