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2) A1[2 � 2] =
0 1

�3 �2
det [sI � A1] = s2 + 2s+ 3 (stable).

3) b1 =
�1

4 + 2
p
6

; c1 =
1

0
; d1 = 1

Then

A1 �
1

d1
b1c

T

1 A1 =
�3 �1
6 �(3 + 2

p
6)

(16)

whose eigenvalues are the zeros of s2+(6+2
p
6)s+15+

6
p
6. Explicitly, there is an eigenvalue s = �(3 +

p
6) of

multiplicity 2.
Since Condition 3 of Theorem 1 is not satisfied, H(s) in (14) is not

SPR.
However, using Theorem 2, we have the following.

1) �0 = 1 > 0.
2) The matrix in (16) has no real negative eigenvalues of odd

multiplicity.
3) T (s) has no imaginary axis poles.

All three conditions of Theorem 2 are satisfied, and it follows thatH(s)
in (14) is PR.
Example 3: Let

H(s) =
�0s

2 + �1s+ �2
s3 + �1s2 + �2s+ �3

=
s2 + 2s+ 3

s3+2:5s2+3s+3:5+2
p
6
=cT (sI�A)�1b (17)

where

A=

0 1 0

0 0 1

�(3:5 + 2
p
6) �3 �2:5

b=

1

�0:5
1:25

c=

1

0

0

: (18)

Using Theorem 2, we have the following.

1) �0 = 1 > 0.
2) A1 =

0 1

�3 �2 ; b1 =
�1

4 + 2
p
6

; c1 =
1

0
; d1 =

1=2 and

A1 �
1

d1
b1c

T

1 A1 =
�3 0

6 �7� 4
p
6

whose eigenvalues are the zeros of s2+(10+4
p
6)s+21+

12
p
6. Explicitly, there are two negative real eigenvalues of

multiplicity 1 (odd): s = �3 and s = �16:8. Therefore,
condition 2) of the theorem is not satisfied and H(s) in (17)
is not PR.

V. CONCLUSION

In this note, we have derived conditions for PR and SPR of an SISO
LTI system. The derived conditions complement the conditions derived
in [7] and are easily verifiable. Finally we note that the notion of Strict
Positive Realness plays a central role in stability theory. In particular,
testing the conditions of the Circle Criterion is equivalent to testing
strict positive realness of a given transfer function for which spectral
conditions are now available.
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Optimal Control of a Failure-Prone Machine Under
Random Demand

Konstantin Kogan, Sheldon Lou, and Avi Herbon

Abstract—In this note, we consider amanufacturing systemwith random
machine breakdowns, which is characterized by a fairly general probability
distribution. The demand is not known during the finite planning horizon
except the probability distribution of the cumulative demand at the end of
the horizon. We propose a decomposition method that features a feedback
control. Simulation is used to compare the average cost of the proposed
method and that of the optimal solution. Our results of more than a hun-
dred examples show that the difference between the two is less than 2.4%.

Index Terms—Feedback, newsboy problems, optimal control, unreliable
machines.

I. INTRODUCTION

This note is motivated by production control problems in, say,
fashion industry where accessory items must be delivered to apparel
manufacturers before the selling season starts and often the total de-
mand for such accessory items is not known when they are produced.
The production control policy discussed in this note tries to reduce both
the inventory and backlog costs and has close ties to two schools of
problems. The first is the well known single period inventory models,
which minimize the expected surplus or shortage cost at the end of
the planning horizon and are frequently referred to as news-vendor or
newsboy problems (see [5] and [9]). Some of these models assume

Manuscript received November 30, 2004; revised May 25, 2005 and October
5, 2005. Recommended by Associate Editor M. Demetriou.

K. Kogan and A. Herbon are with the Department of Interdisciplinary
Studies—Logistics, Bar-Ilan University, Ramat-Gan 52900, Israel.

S. Lou is with the College of Business Administration, California State Uni-
versity San Marcos, San Marcos, CA 92096-0001 USA.

Digital Object Identifier 10.1109/TAC.2006.872831

0018-9286/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 5, MAY 2006 901

that the uncertainty is due to random demand and random production
yield, while machine breakdowns are ignored. The second is the
optimal production control of manufacturing systems with stochastic
interference, e.g., random yield and unreliable machines (see [2] and
[11]). It tries to trace the demand as closely as possible at each time
point of the planning horizon. To derive the optimal control, this school
of methods often assumes that the inventory level is observable during
the planning horizon, and the transition between an operational state
to a breakdown state of the system is described by a continuous-time
Markov chain (see, for example, [1], [4], and [6]).

Such a problem, while vital for shop floor managers, is regretfully
complex when viewed with an optimization perspective. Rarely can
theoretical solutions, in particular closed-form ones, be derived, ex-
cept for a handful of cases with specific, say, exponentially distributed
machine up and down durations over an infinite production horizon
[10], [8]. The resulting optimal feedback policies are characterized by
constant hedging or threshold points. Efforts were also made to seek
conditions under which the hedging points still remain constant even
though the exponentiality assumption is relaxed for an infinite horizon
problem [3]). The system considered in this note is significantly dif-
ferent. It features a finite production horizon, a demand that is known
only at the end of the horizon, except its probability distribution, and
an unreliable machine whose state follows a general time-dependent
probability density function. The goal is to minimize both the average
inventory carrying cost during a finite production horizon and the sur-
plus/shortage cost at the end of the horizon. Thus, the contributions of
our note are: i) it extends the classical newsboy problem to incorpo-
rate production dynamics and failure-prone conditions; ii) the machine
state is described by a rather general probability density function as
shown in the next section. If the machine up and down time distribu-
tions are i.i.d., the aforementioned density function can always be con-
structed either analytically or numerically; iii) the production horizon
is finite and thus the derived feedback policy is characterized by gen-
eral, time-dependent thresholds; and iv) the solution approach which is
based on the use of the Maximum principle with the aid of a heuristic
procedure is also distinctive, as detailed in the following sections.

II. THE MODEL

Consider a failure-prone machine producing a single product-type to
satisfy a demand d at the end of the production horizon T . The demand
is a random variable whose realization D is known only at the end
of the production horizon. We assume that d is characterized by the
probability density function fd(D) and cumulative distributionFd(D).

Machine state �(t) (�(t) = 1 if the machine is operational and
�(t) = 0 if it is broken) is characterized at time t by a probability
density function ft;T (A) such that the machine is upA time units (i.e.,
T

t
�(� )d� = A) out of T � t time units if �(t) = 1. The cumulative

distribution function of ft;T (A) is denoted Ft;T (A). We use �(t; �) to
identify the machine state for realization �.

Denote the set of all possible realizations over the entire production
horizon f�g by R and define R(t; �) as

R(t; �) = �
0
�
0 2 R; and

�(�; �0) = �(�; �); for 0 � � � t : (1)

Thus, R(t; �) consists of only those realizations that can take place
in the future if by time t we have observed a realization �. We assume
that the production rate u(t; �) is bounded

0 � u(�; �) � U; � 2 R; 0 � � � T: (2)

We also assume the nonanticipativity constraint

u(�; �) = u(�; �0); for all �0 2 R(t; �); 0 � � � t: (3)

The inventory level X(t; �) is described by the following equation:

X(t; �) = X(0) +
t

0

�(�; �)u(�; �)d�: (4)

Our goal is to determine the optimal production rate u(t; �), 0 �
t � T that minimize the expected total cost

J = E
R;fDg

T

0

hX(�; �)d� + p
�maxf0;D �X(T; �)g

+p+ maxf0;X(T; �)�Dg ! min (5)

where h is the unit inventory carrying cost, p+ and p� are the unit
surplus and shortage costs at the end of the production horizon, respec-
tively.

III. VARIATIONAL ANALYSIS OF THE PROBLEM UNDER KNOWN

DEMAND

As the first step, we assume that D is known and consider the vari-
ation of the objective function

�J = E
R

T

0

h�X(�; �)dt +
d

du(t; �)
E
R
p
�maxf0;

D �X(T; �)g+ p
+maxf0;X(T; �)�Dg �u(�; �): (6)

The control variation �u at t is defined as

�u(�; �) =
�(t; �)�u; if t� " < � � t

0; otherwise
(7)

for some small ". According to (3) and (7), we have

�u(�; �) = �u(�; �0); for all �0 2 R(t; �); 0 � � � T: (8)

Consequently, the influence of variation (7) and (8) on the inventory
level X(t; �) in the first order of " is

�X(�; �0) =
"�(t; �)�u; if � > t� "

0; otherwise.
for all �0 2 R(t; �): (9)

With respect to (7)–(9), variation (6) in the first order of " takes the
following form:

�J = "�(t; �)�uh(T � t) +
d

du(t; �)
E

R(t;�)
p
�maxf0;

D �X(T; �)g+ p
+maxf0;X(T; �)�Dg �u: (10)

Let us introduce a new (co-state) variable

 (t; �) =h(t� T )� lim
�(t;�)!�(t;�)

1

"�(t; �)

d

du(t; �)

� E
R(t;�)

p
�maxf0;D �X(T; �)g

+ p
+maxf0;X(T; �)�Dg : (11)
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Then, (10) transforms into

�J = �"�(t; �) (t; �)�u: (12)

Consequently, the optimality condition, �J � 0, is

�J = �"�(t; �) (t; �)�u � 0: (13)

Since when the machine is down, no control can be applied, we con-
sider the case when machine is up, i.e., �(t; �) = 1. First, if the ma-
chine is idle, u(t; �) = 0, the only feasible variation is �u � 0 and,
thus, condition (13) holds only when  (t; �) � 0. Similarly, when
u(t; �) = U , only nonpositive variation of is feasible �u � 0, i.e, (13)
holds only when  (t; �) � 0. Finally, the case of 0 < u(t; �) < U
implies  (t; �) = 0. Thus, we summarize the optimal control for our
stochastic problem, as shown in (14) at the bottom of the page.

IV. EXPECTATION ANALYSIS

The second term in the co-state (11)

L = lim
�(t;�)!�(t;�)

1

"�(t; �)

d

du(t; �)
E

R(t;�)
p�maxf0;

D �X(T; �)g+ p+ maxf0;X(T; �)�Dg (15)

involves the expectation of terminal inventories. To deal with (15),
we propose the following heuristic approach. First, we derive a lower
bound by minimizing the expected cost over all possible realizations
without imposing the nonanticipativity condition. This implies that the
control which could provide such a cost online does not always exist.
Then we consider an online control at a time point t, impose nonantici-
pativity (which increases the expected cost found at the first step) at this
time point and apply a small control variation to minimize the change in
the cost function. The minimization results in a feedback policy (Sec-
tion V). As shown in our simulation results (Section VI), this lower
bound-guided solution method provides a very good approximation to
the optimal solution.

Note, that givenX(t; �) and�(�; �) for t � � � T , problem (1)–(5)
takes a deterministic form

T

t

hX(�; �)d� + p�maxf0;D �X(T; �)g

+p+ maxf0;X(T; �)�Dg ! min (16)

subject to

X(s; �) =X(t; �) +
s

t

�(�; �)u(�; �)d� (17)

0 �u(�; �) � U; t � � � T: (18)

We now solve this deterministic optimization problem. According to
the maximum principle [7], the Hamiltonian

H(�; �) = �hX(�; �) + �(�; �)�(�; �)u(t; �) (19)

where

_�(�; �) = h; �(T; �) =

p�; if X(T; �) < D

�p+; if X(T; �) > D

p 2 [�p+; p�]; if X(T; �) = D

(20)

is maximized and the admissible control u(�; �) has the following
form:

u(�; �) =
U; if �(t; �) � 0 and �(t; �) = 1

0; if either �(t; �) < 0 or �(t; �) = 0 or both.
(21)

Note, since h > 0, the case of u(�; �) = e, 0 � e � U when
�(t; �) = 0 over an interval of time is excluded as not feasible. Indeed,
differentiating �(t; �) = 0 over the interval and taking into account
(20) we find that _�(�; �) = h = 0, which cannot hold.

We further assume that h < p� and hT > p�, because if h � p�,
then the production will always increase the total cost. On the other
hand, if hT � p�, then carrying inventory will always be cheaper than
having backlog at the end of the horizon. As a result, the optimal con-
trol will be a special case of that for hT > p�, as shown below. In
addition, we introduce a new parameter, G = T � (p�=h), and as-
sume that X(t; �) < D, otherwise the optimal control is trivial—stop
production. In the following two lemmas, we derive the optimal control
for two cases, t < G and t � G.
Lemma 1: Assume that t < G and t2 satisfies X(t; �) +

U
T

t
�(�; �)d� = D. If t2 < G, then u(�; �) = 0 for t � � < G and

u(�; �) = U for G � � � T . Otherwise, if t2 � G, then u(�; �) = 0
for t � � < t2 and u(�; �) = U for t2 � � � T .

Proof: Assume t2 � G, so that there is enough time to satisfy
demand X(t; �) + U

T

t
�(�; �)d� = D. Then, the co-state solution

�(�; �) = h(� � t2) is feasible and thus according to (21) control
u(�; �) = 0 for t � � < t2 and u(�; �) = U for t2 � � � T
is optimal if �(T; �) = h(T � t2) � p�. The inequality is ensured
by t2 � G, as stated in the lemma. On the other hand, if t2 < G,
then using the same argument one can verify that the co-state solution
�(�; �) = h(� � t1), t1 = G > 0 is feasible and, thus, the control
stated in the lemma is optimal.
Lemma 2: Assume that t � G and t2 satisfies X(t; �) +

U
T

t
�(�; �)d� = D. If t2 > 0, then u(�; �) = 0 for t � � < t2 and

u(�; �) = U for t2 � � � T . Otherwise, if t2 � 0, then u(�; �) = U
for t � � � T .

Proof: The proof is similar to that of Lemma 1 and, therefore,
omitted.
Expectation of Terminal Production Results
Let us denote the ratio (D �X(t; �))=U as Y (t; �). If control

u(�; �) is defined by Lemmas 1 and 2 the expectation in (15),
ER(t;�)[p

�maxf0;D � X(T; �)g + p+maxf0; X(T; �) � Dg],
denoted by ER(t;�) [�] can be calculated as follows:

E
R(t;�)

[�] =
Y (t;�)

�1

p� (D � (X(t; �) + UAt)) ft;T (At)dAt

+
1

Y (t;�)

p
T

t

(X(t; �) + UAs �D)ft;T (s;As)dAsds (22)

u(t; �) =

U; if  (t; �) > 0 and �(t; �) = 1

u�(t) 2 [0; U ]; if  (t; �) = 0 and �(t; �) = 1

0; if either  (t; �) < 0 or �(t; �) = 0 or both.
(14)
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when t � G and As =
T

s
�(�; �)d�

E
R(t;�)

[�] =
Y (t;�)

�1

p� (D � (X(t; �) + UAG)) fG;T (AG)

� dAG +
1

Y (t;�)

p
T

t

(X(t; �) + UAs �D)

� ft;T (s; As)dAsds (23)

when t < G. In the previous equalities, the mutual probability den-
sity function at time t of being up A time units when the machine is
switched on from time point s to T is ft;T (s;A)

T

t

ft;T (s;A)ds = ft;T (A) (24)

and the earliest switching point t� = maxft; Y (t; �)g. Note, that the
second terms in (22) and (23) represent the cases when the inventory
at the end of the production horizon equals the demand, which is why
any cost p 2 [�p�; p+] can be assumed. Thus, taking into account
that X(t; �) + UAs � D = 0, (22) and (23) can be expressed as the
follows:

E
R(t;�)

[�] =
Y (t;�)

�1

p� (D � (X(t; �) + UA)) ft;T (A)dA

+
1

Y (t;�)

p � 0 � ft;T (A)dA (25)

E
R(t;�)

[�] =
Y (t;�)

�1

p� (D � (X(t; �) + UA)) fG;T (A)dA

+
1

Y (t;�)

p � 0 � fG;T (A)dA: (26)

Due to the nonanticipativity (4), there is only one control u(t; �) set
up from t to t + ", which may differ from that we would respond
if all breakdowns were known in advance. Since the first terms in
(25) and (26) represent the cases when the terminal inventory is
less than the demand, a control change over time " cannot convert
shortage into a surplus. Specifically, with respect to these terms, we
produce �(t; �)u(t; �)" instead of U" for time " which results in
�(t; �)u(t; �)" + U(A � "). On the other hand, the second terms
in (25) and (26) represent the cases when the cumulative produc-
tion exactly equals the demand at the end of the planning horizon,
X(t; �) + UA � D = 0, with the aid of the maximal control U
applied at t� > t, i.e., if we start to produce at t, u(t; �), we will have
a surplus, �(t; �)u(t; �)". Thus, in the first order of ", (25) and (26)
take the following form:

E
R(t;�)

[�] =
Y (t;�)

�1

p�(D� (X(t; �) + �(t; �)u(t; �)"

+ U(A� ")))ft;T(A)dA

+
1

Y (t;�)

p+(�(t; �)u(t; �)")ft;T (A)dA; (t � G)

(27)

E
R(t;�)

[�] =
Y (t;�)

�1

p�(D� (X(t; �) + �(t; �)u(t; �)"

+ UA))fG;T (A)dA

+
1

Y (t;�)

p+(�(t; �)u(t; �)")ft;T (A)dA (t < G):

(28)

V. FEEDBACK POLICY

Given expressions (27) and (28) for ER(t;�) [�] =

ER(t;�) p�maxf0;D�X(T; �)g + p+ maxf0;X(T; �) � Dg ,

(15) is determined as follows:

L = lim
�(t;�)!�(t;�)

1

"�(t; �)

d

du(t; �)

E
R(t;�)

p�maxf0;D �X(T; �)g

+p+ maxf0;X(T; �)�Dg

= p+ � (p� + p+)Ft;T (Y (t; �))

when t � G and

L = �p�FG;T (Y (t; �)) + p+ (1� Ft;T (Y (t; �)) ;when t < G:

Therefore, the co-state variable (11) is

 (t; �) =h(t� T )

� p+ � (p� + p+)Ft;T (Y (t; �)) ; if t � G

(29)

 (t; �) =h(t� T ) + p�FG;T (Y (t; �))

� p+ (1� Ft;T (Y (t; �))) ; if t > G: (30)

Our results are summarized in the following theorem.
Theorem 1: Given (1)–(5), (22), and (23), and assume demandD is

known and hT > p�, the optimal feedback policy is shown in

u(t; �)=

U; if X(t; �) < X�(t) and �(t; �)=1

u�(t); if X(t; �) = X�(t) and �(t; �)=1

0; if either X(t; �) > X�(t) or �(t; �)=0; or both

where Y �(t) = (D �X�(t))=U , if t � G, then intermediate control
u�(t) = _X�(t) and threshold X�(t) satisfy

@Ft;T (Y �(t))

@t
= �

h

p� + p+
and

h(t� T )

� p+ � (p� + p+)Ft;T (Y
�(t)) = 0; respectively

otherwise u�(t) and X�(t) satisfy

h� p�u�(t)
@FG;T (Y �(t))

@ (Y �(t))

+p+
@Ft;T (Y �(t))

@t
=0 and

h(t� T ) + p�FG;T (Y
�(t))

�p+ (1� Ft;T (Y
�(t))) = 0; respectively:

Proof: Given (29) and (30), we can formalize the case of
 (t; �) = 0 in optimality conditions (14). To determine the con-
trol in such a case over an interval, we differentiate this condition
over this interval. Taking into account (29), we find for t � G,
_ (t; �) = h + (p� + p+)@Ft;T (Y (t; �))=@t = 0.

Denote the u(t; �) that satisfies @Ft;T (Y (t; �))=@t =
�h=(p� + p+) as u�(t) and the X(t; �) that satisfies
h(t � T ) � p+ � (p� + p+)Ft;T (Y (t; �)) = 0 as
X�(t). Since (@(p� + p+)Ft;T (Y (t; �))=@X(t; �))=
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�((p� + p+)=U)(@Ft;T (Y (t; �))=@Y (t; �)) � 0, we can
express optimality conditions (14) for t � G as shown in

u(t; �)=

U; if X(t; �) < X�(t) and �(t; �)=1

u�(t); if X(t; �)=X�(t) and �(t; �)=1

0; if either X(t; �) > X�(t) or �(t; �)=0; or both
(31)

as stated in the theorem. Applying the same arguments the optimal
feedback policy is obtained for t < G.

Note, that Theorem 1 assumes that the unit inventory holding cost
over the entire horizon is larger than the unit shortage cost, that is,
hT > p�. If the unit holding cost is smaller, that is, hT � p�, then
t � 0 � T � (p�=h) holds and thus the first policy determined in
Theorem 1 is the only policy which is always optimal.
Extension to Random Demand
The effect of the random demand is straightforward. Because break-

downs do not depend on demands, the only change we need in (29) and
(30) is an additional integral over demand D as follows:

 (t; �) =h(t� T )

�
1

0

p+ � (p� + p+)Ft;T (Y (t; �))

� fd(D)dD if t � G (32)

 (t; �) =h(t� T )

+
1

0

p�FG;T (Y (t; �))� p+(1� Ft;T (Y (t; �))

� fd(D)dD if t < G (33)

respectively. Therefore, the optimal feedback policy (31) remains the
same, but u�(t) and X�(t) satisfy

1

0

@Ft;T (Y
�(t))

@t
fd(D)dD

= �
h

p� + p+

h(t� T )�
+1

0

p+ � (p� + p+)Ft;T (Y
�(t)) fd(D)dD

= 0 for t � G: (34)

Example: Suppose both demand and machine state are character-
ized by uniform distributions:

ft;T (A) =
1=(T � t); if 0 � A � T � t

0; otherwise

fd(D) =
(1=M); if 0 � D �M

0; otherwise

and hT � p. Then if t � G = T � (p�=h), u�(t) =
(p+=(p+ + p�))U + (2h=(p+ + p�))U(T � t) and X�(t) =
(M=2)� ((p+ + h(T � t))=(p+ + p�))U(T � t).

This implies that even under a simple uniform distribution, the
optimal threshold X�(t) is a nonlinear function of time. It increases
monotonically with a decreasing rate, �X�(t) = �(2h=(p+ + p�))U ,
(in a concave manner) and attains the expected demand, E[d] =M=2
at t = T . Furthermore, if UT > M=2, i.e., the system is capable of
meeting the average demand, no production is needed at the beginning
sinceX�(0) < 0. Once X�(t) becomes equal to the current inventory
level X(t; �), the optimal control switches. Specifically, each time the

TABLE I
PERFORMANCE OF THE SUGGESTED METHODOLOGY VERSUS THE

OPTIMAL SOLUTION

machine is down and thusX(t; �) < X�(t), the maximum production
rate will be used to restore inventories as fast as possible upon the
machine repair. When X(t; �) reaches X�(t), the maximum rate
will be switched to the intermediate production rate u�(t), and the
inventory level will be maintained at X�(t) until the next breakdown.

VI. SIMULATION ANALYSIS

In this section, we use simulation to compare the suggested decom-
position approach and the optimal solution. To do so, we first rewrite
(10) as the following:

�J = "�(t; �)�uh(T � t) +
d

dX(T; �)
E

R(t;�)
p�maxf0;

D �X(T; �)g+ p+ maxf0;X(T; �)�Dg �X(T; �): (35)

Using (9), we thus obtain an equivalent expression for (11):

 (t; �) = h(t� T ) + E
R(t;�)

[
(X(T; �)�D)] (36)

where


(X(T; �)�D) =

�p+; if X(T; �) > D

p�; if X(T; �) < D

p 2 [�p+; p�]; if X(T; �) = D.
(37)

Substituting (36) and (37) into  (t; �) = 0 from general stochastic
optimality condition (14) we have the following equation for X�(t):

h(T � t) = E
R(t;�)

[
(X(T; �)�D)]

= E
R(t;�)


 X�(t)

+
T

t

�(�; �)u(�; �)d� �D

(38)

where u(t; �) is determined by (31). Now, instead of analysis of the
expectation in (38) as suggested in this note, we use simulation to cal-
culate it.

Given a probability distribution function, at each time point twe now
can simulate the machine state for a very short interval " to study the
effect of optimal threshold (38) compared to that of the decomposition
approach (Theorem 1) on the expected cost. For example, if t � T �
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(p�=h), the threshold X�(t) at t and t+ " determined by Theorem 1
are

h(t� T ) + p�FT�(p =h);T

D �X�(t)

U

� p+ 1� Ft;T
D �X�(t)

U
= 0

h(t+ "� T ) + p�FT�(p =h);T

D �X�(t+ ")

U

� p+ 1� Ft;T
D �X�(t+ ")

U
= 0

and the production rate if X(t) = X�(t) is u�(t) = (X�(t + ") �
X�(t))=".

The procedure for constructing optimal thresholds is as follows: se-
lect time step ", threshold accuracy �, set t = T�" andX�(T ) = D, i)
simulate breakdowns starting from t for each Xi(t)+ i�, i = 0; 1; . . .,
and, X0(t) = 0 until i� is found so that (38) is met for X�(t) =
Xi�(t) + i��; ii) set t = t � ", if t > 0 go to i), otherwise stop,
all thresholds have been found. The procedure is backward as to find
thresholdX�(t0) from (38), we need controls and, thus, thresholds over
all t > t0. Once these true optimal valuesX�(t) for the entire planning
horizon are found, we proceed with the standard forward simulation
using the optimal thresholds and calculate the average objective func-
tion (5) for interval [t; T ]. This average is then compared with the one
obtained by using the decomposition method.

Two types of experiments were conducted, one assumes that the ma-
chine up and down times follow uniform distributions characterized by
bup, aup and bdown, adown, the other, the time-independent Bernoulli
distribution with the machine being up at each " with probability p.
In the former case probability density function ft;T (A) was calculated
numerically, while in the latter, it is binomial over each interval [t; T ].
All experiments were divided into two groups characterized by over-
capacity (pUT > D; ((bup � aup)=(bdown � aup))UT > D) and
under-capacity, respectively. The results of more than a hundred ex-
amples show that the relative difference between the average cost of
the optimal solution and that of the decomposition method is no more
than 0.1% for the analytical (binomial) distribution and no more than
2.4% for the numerically obtained time-dependent distribution. In ad-
dition, in all experiments, the time needed to compute thresholds was
less than half an hour for the numerical distribution (a few seconds
for the analytical one), while it was more than forty seven hours com-
putation to reach the optimality. Table I presents the results for the
analytical and the numerical distributions under both under-capacity
(D = 30) and over-capacity (D = 60) conditions with T = 10,
X0 = 0, U = 5, h = 2, p+ = 1, and p� = 30, " = 0:1
and � = 0:01. Each of the examples was simulated for 1 000 000
runs, for three breakdown levels ((1� p)100% in analytical case and
(1 � ((bup � aup)=(bdown � aup)))100% in numerical case) of 5%,
10%, and 15%.

Table II presents optimal thresholds versus those obtained with the
suggested methodology for the example of Table I (time-independent
distribution with under capacity, p = 0:9).
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