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Supply Chain With Inventory Review and
Dependent Demand Distributions:

Dynamic Inventory Outsourcing
Konstantin Kogan, Sheldon Lou, Charles S. Tapiero, and Matan Shnaiderman

Abstract—In this paper, we consider inventory outsourcing by a
producer to a distributor. The distributor charges a cost for each
unit it handles and the manufacturer responds with a production
and inventory policy over a finite contract period. As a result, the
two parties enter a noncooperative differential game. We address
the effect of information asymmetry in such a game under a sto-
chastic demand when the inventory level can only be observed by
the manufacturer intermittently.

Note to Practitioners—We demonstrate that even for the seem-
ingly simple one-part-type system with a single inventory review,
the inclusion of the random demand still leads to a nontrivial op-
timal production control for the manufacturer. As to the distrib-
utor, his charge for handling manufacturer’s inventories is deter-
mined by his leadership in the supply chain and depends on the
remaining number of periods to go. While the desire to charge as
much as possible for handling inventories at the last period pre-
vails, the distributor reduces the charge when there are two periods
to go.

Index Terms—Differential games, dynamic programming/op-
timal control applications, inventory/production policies.

I. INTRODUCTION

F IRMS within a supply chain often pursue their own
and mutually conflicting objectives, leading to intra-

supply-chain competitions and the deterioration of the overall
performance. The effect of such competitions on supply chains
and their performance is well studied under a static framework.
Extensive reviews focusing on such competition-related aspects
include discussions on integrated inventory models [11], game
theory in supply chains [2], price quantity discounts [21], and
competition and coordination [18]. However, contemporary
business conditions are often characterized by highly volatile
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situations changing in a stochastic manner. As a result, deci-
sions and adjustments need to be made frequently based on
system state updates. Such a dynamic nature of supply chains
exceeds the scope of the static framework and thus demands
further study.

Our paper focuses on dynamic behaviors of various parties
in a supply chain. Although differential game seems an instinc-
tive choice for such an analysis, due to its mathematical diffi-
culties, in particular, when decisions have to be made contin-
uously, the supply chain management literature has primarily
been concerned with deterministic, but not stochastic, dif-
ferential models [2]. For instance, Jorgenson [10] derives an
open-loop Nash equilibrium for a channel with static determin-
istic demand. Eliashberg and Steinberg [6] use the Stackelberg
solution approach in a game involving a manufacturer and a dis-
tributor (both of unlimited capacity) and a quadratic seasonal
demand. Assuming a constant wholesale price with which the
manufacturer charges the distributor and no backlog allowed,
they investigate the impact of a deterministic seasonal pattern
upon various policies of the channel. To address the determin-
istic seasonal demands, Desai [3] suggests a numerical anal-
ysis of the Stackelberg solution under unlimited production ca-
pacity. For additional applications of differential games in man-
agement science and operations research, we refer to reviews
by Feichtinger and Jorgenson [9], Kogan and Tapiero [16], and
He et al. [12].

In this paper, we analyze a differential inventory game with a
stochastic demand in a supply chain employing the so-called
inventory outsourcing, which is characterized by a distributor
who holds the manufacturer’s inventory and charges him a cost.
In fact, it is a special case of a broader technique called Vendor
Managed Inventory (VMI), which has been getting increasingly
popular among large producers and distributors in a supply
chain (see, for example, [4], [17], [20], and [23] for delibera-
tions on information sharing between parties employing VMI).
Such inventory management services have grown steadily over
the last half century and now facilitate warehouse, logistics, de-
livery, courier, and storage distribution. Today distributors offer
comprehensive and integrated menus of services to retailers,
manufacturers and various agencies in a supply chain covering
diverse areas such as automotive, healthcare, medical, supply
and fixed asset management.

The contractual mode of the inventory outsourcing stated
above portrays a supply chain with two players engaging in a
differential game. In particular, we consider the situation when
the distributor is the leader who sets the charge for carrying
inventory and the manufacturer, a follower who responds to
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the charge with a production policy. This depicts a sequential
decision making scheme (called a Stackelberg strategy).

The contribution of our framework includes the following.
i) Illustrating the effect of periodic VMI dynamics on a con-

tinuous-time supply chain model.
ii) Analyzing a stochastic differential game and providing

closed form solutions.
iii) Determining the effect of leadership on supply chain de-

cisions over time in terms of both production policies and
inventory charges.

Based on these features, we provide a number of insights, which
extend the previous results for static models. Specifically, we
find that the competition forces the distributor to increase his
charges for handling inventories. Note, that the situation is
very different in a centralized supply chain, where inventory
charges, considered internal transfers, are typically marginal.
We show that this phenomenon corresponds to the so-called
double marginalization effect well-studied in static settings.
We demonstrate that this effect depends on the leadership in
the supply chain and on the remaining number of periods to
go. Thereby, it is affected by demand distributions. Moreover,
the dynamic setting shows that increased length of inventory
review period impacts both production and inventory dynamics
of the manufacturer and the inventory handling charges of the
distributor. Consequently, the implied double-marginalization
worsens.

II. PROBLEM FORMULATION

We assume that the distributor’s goal is to minimize its ex-
pected cost (or maximize its profit)

(1)

(2)

where is the distributor’s marginal cost, is the max-
imum willingness to pay for the inventory service,
is the inventory or backlog

, and is the cost the distrib-
utor charges the manufacturer for holding a unit of product. It
is also the control variable for the distributor.

Most theoretical work related to stochastic, continuous-time
production with periodic review is focused on single-period
models (e.g., Kogan et al. [15]. Our production model intro-
duces an update before the end of production period, i.e., it
considers a two-period review approach. As defined below, the
model is inspired by business cases in which manufacturers
produce products with relatively short life cycles. In such cases,
a single inventory update at a predetermined point may suffice
to identify the demand for the remaining part of the production
horizon. For example, Fisher et al. [7], [8] report examples in
the apparel industry, where highly accurate demand forecasts
are made after observing only 11% to 20% of the total demand.

Specifically, the inventory dynamics of the manufacturer is
defined as

(3)

where is a known initial inventory level and , the pro-
duction rate at time . The production rate is bounded by the
capacity , the maximum amount of products that the manu-
facturer can produce per time unit

(4)

In the above equation, , for and
for , is the demand rate. Similar to many produc-
tion control studies (see, for example, [13], [19], [14]), we as-
sume that the demand rate is exogenous and constant at each
period. This implies that the demand does not depend on the
level of available stocks and the price (the price elasticity of de-
mand is zero). Such low-price elasticity is typical when substi-
tute products are scarce or the necessity of the product is high.
Typically, products requiring a small portion of the customer’s
income tend to have lower elasticity. (We plan to address the
cases when demand varies in response to item availability, i.e.,
inventory level, and to item price in our future research.) Specif-
ically, we assume that and , where and

are random variables whose values are unknown in
but known at . The probability density function
of and the conditional distribution function are
known. Also, and the corresponding cumulative functions,

, 2, are continuously differentiable. To simplify the
expressions, we further assume that .

The manufacturer’s goal is to minimize expected inventory
costs

(5)

where

(6)

In the above expression, is the unit backlog (shortage) cost.
Henceforth, we also assume that the inventory unit cost
may be adjusted once at the inventory review point , i.e.,

if
if

We first analyze the deterministic part of the problem.

III. THE DETERMINISTIC COMPONENT OF THE PROBLEM

Consider time interval . At this interval problem, (1)–(4)
takes the following deterministic form:

(7)

s.t. to (2)–(4).
The optimal solution (commonly referred in game theory as

the best response function) for this problem is straightforward
because dynamic (3) does not depend on explicitly. Thus,
the optimal solution for the distributor is a trivial one: charge the
producer at the highest possible value, when .
This charge does not affect the objective function when

as there is nothing to store. This corresponds to the severe
double marginalization, as the distributor levies the maximum



KOGAN et al.: SUPPLY CHAIN WITH INVENTORY REVIEW AND DEPENDENT DEMAND DISTRIBUTIONS: DYNAMIC INVENTORY OUTSOURCING 199

charge for each unit stored. The optimal production policy for
the producer is also trivial. It depends on the initial inventory

as the following: If is larger than zero, stop the pro-
duction until the inventory reaches zero; then maintain a pro-
duction rate equal to the demand rate to keep inventory at zero.
On the other hand, as long as is less than zero, produce
at the maximum rate . The optimal production rate is thus a
function of and , denoted and is summarized
in the following theorem.

Theorem 1: For , given inventory level ,
the Stackelberg equilibrium is described by the unique optimal
production policy , see the first equation at
the bottom of the page and the optimal inventory holding charge

when , otherwise .
The related objective function values for the distributor can

be calculated as the following:

(8)

The objective functions for the producer are similar

otherwise

IV. THE STOCHASTIC COMPONENT OF THE PROBLEM

Let us now consider the optimal solution in . Applying
conditional expectation to the objective function (1) and ac-
counting for (8), we obtain equation (9) at the bottom of the
page, and the last equation at the bottom of the page.

if
if

if

if

if
if

(9)
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Then, denoting , objective func-
tion (9) transforms into

(10)

and equation (11) at the bottom of the page. Thus, we have trans-
ferred the original stochastic problem into a deterministic one.

A. Optimal Response of the Manufacturer

We start the analysis by discussing the optimal production
strategy for the producer in response to a , .
Consider the objective function (5) for the producer

(12)

Applying conditional expectation and (3) and (6), we have equa-
tion (13) shown at the bottom of the page.

As we have explained, the last term in (13), denoted , is
deterministic for given and (i.e., at ). We employ
Theorem 1 and consider two cases, and .

1) . Since ,
the probability of being larger than 0 is equal to

.
Therefore,

.

2) . Similarly,

.

Since

, the objective function (13) at the
bottom of the page takes the following form of equation (14)
at the bottom of the page and see equation (15) at the bottom
of the next page.

Problem (4), (14), and (15) are a canonical deterministic
optimal control problem which can be studied with the aid of
the maximum principle. Since all constraints are linear, the
maximum principle-based optimality conditions are not only
necessary but also sufficient provided that the objective func-

(11)

(13)

(14)
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tion (14) is convex. Moreover, if the latter is strictly convex (if
and ), this problem

has a unique solution. We thus construct the Hamiltonian as

(16)

where the co-state variable is determined by the co-state
differential equation

(17)

with boundary (transversality) condition

(18)

According to the maximum principle, the optimal control that
maximizes the Hamiltonian is

if
if
if

(19)

1) Solution: First, we resolve the ambiguity of the third con-
dition from (19). This is accomplished in the following lemma
by differentiating the condition and taking into ac-
count (17), which results in

(20)

Lemma 1: Let at a measurable interval and define
. If , then and

for .
Proof: See the Appendix.

Note that (20) corresponds to the solution of the well-known
news-vendor problem. Accordingly, the singular condition,

, which is most attractive in linear control systems,
presents the case when the service level can be
ensured by an optimal production rate, , chosen so
that the probability that the demand rate does not exceed the

Fig. 1. Optimal control over the first period for ���� � � when
(a) ����� ������� ���� � � and (b) ����� ������� ���� � �.

production rate is . Equation (20) also shows
that the greater the cost charged by the distributor, the lower
the service level , the production rate
and thereby the inventory level. This corresponds to the double
marginalization effect. That is, the competition causes the
manufacturer to produce and stock less than that demanded by
the system-wide optimal solution.

We next introduce two switching points and which
satisfy

(21)

(22)

f
respectively, and assume that the production system is balanced,
i.e., .

Consider first the case of a non-negative initial inventory
level. Two most general cases are described in the following
two lemmas and depicted in Fig. 1.

(15)
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Fig. 2. Optimal control over the first period for ���� � � when
(a)����� ������� ���� � � and (b) ����� ������� ���� � �.

Lemma 2: Let and . If
and , then the op-
timal control is for , for

, and for .
Proof: See the Appendix.

Note that the optimal control described in Lemma 2 consists
of three different trajectories. If the feasibility requirement

is not met, then
instead of producing at the maximum rate the third trajectory
implies no production at all. This is summarized in the fol-
lowing lemma.

Lemma 3: Let and . If
and , then the optimal con-
trol is for , for

, and for .
Proofs for Lemmas 3 as well as for Lemmas 4–5 are similar to

Lemma 2 and thus omitted. The two general cases when
are shown in the following two lemmas (see Fig. 2).
Lemma 4: Let and .

If and
, then the optimal control is for

, for
, and for .

Lemma 5: Let and . If
and ,

then the optimal control is for
, for ,

and for .
Lemmas 2–5 along with Figs. 1 and 2 illustrate the effect

of uncertainty on optimal production policies. Specifically, ac-
cording to conditions (19) and Lemma 1, the production control
under piecewise constant inventory costs involves only three op-
timal production regimes: , , and .
Lemmas 2–5 determine the sequencing of these regimes. The se-
quencing is due to the level of demand expectation. Unless the
expectation is extremely high (so that the production at the max-
imum rate is needed at all times), or extremely low (so that no
production is needed), the most attractive regime is , as
discussed above. This regime is followed by the maximum pro-
duction rate if the demand expectation is high (but not extremely
high), as observed from Figs. 1(a) and 2(a). Otherwise, if the

expectation is low (but not extremely low), the singular regime
is naturally followed by no production. The initial regime of a
production period depends on initial inventories of the period.
Indeed, if there is no inventory at the beginning of the period,
then from the beginning until the manufacturer has
to switch to either maximum or minimum production level in
anticipation of either high or low demand. This solution will
be shown in Lemma 6 below and is a special case of that de-
scribed in Lemmas 2–5. However, if the manufacturer initially
has a surplus of inventory, then it is beneficial to get rid of the
surplus first before entering the singular regime , as
stated by Lemmas 2 for the case of high demand expectation and
by Lemma 3 for low demand expectation (see Fig. 1(a) and (b),
respectively). On the other hand, if there is a shortage at the be-
ginning of the period, then it is optimal to start from production
at maximum rate to eliminate the shortage as fast as possible, as
stated in Lemmas 4 and 5 and shown in Fig. 2.

B. Stackelberg Equilibrium With the Distributor Being the
Leader

When the distributor is the leader the optimal production
policy defined in Lemmas 2–5 is substituted into the distrib-
utor’s problem. Lemmas 2–5 identify four general types of
optimal solutions and a number of suboptimal cases whose
solutions are special cases of a generally optimal policy. Each
of these cases thus induces a corresponding equilibrium. To
avoid massive mathematical expressions we here focus only on
two cases both of which are based on the common assumption
that initial inventory level is zero, . Then, the first
switching point in Lemmas 2–5 vanishes and the optimal
solution (the best response) takes the following form.

Lemma 6: The optimal production policy is the following.
• Low demand expectation: if

, then for ,
if but

, then for and
for .

• High demand expectation: if
but

, then
for and for ,
otherwise if

, then
for .

To find Stackelberg equilibrium, we substitute variable
along with the first production policy from Lemma 6 (induced
by low demand expectation of the supply chain) into (10) and
(11). This converts the dynamic problem into a static one, to
which we can apply the first order optimality condition

(23)

Let us denote a solution of (23) in as . We thus have
proved the following theorem.

Theorem 2: Assume , ,
and the distributor is the leader in

the supply chain. If , ,
and , then for
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, for , and constitute
a unique Stackelberg equilibrium in the differential inventory
outsourcing game for .

Similarly, we can determine the equilibrium for the case of
high demand expectation by substituting the production policy
from Lemma 6 into (10) and (11). Denoting the solution to (23)
for such a case as , we conclude with the following theorem.

Theorem 3: Assume , ,
and the distributor

is the leader in the supply chain. If ,
, ,

and , then for ,
for and constitute a unique Stackelberg
equilibrium in the differential inventory outsourcing game for

.
Theorems 2 and 3 demonstrate that the distributor’s charges

are generally higher than the marginal cost , as a result of
competition. However, these charges decrease and thus implied
double marginalization reduces compared to those from The-
orem 1 for any unit of inventory sent to the distributor when
there is only one period to go. This implies that a higher level of
uncertainty when there are two periods to go makes the distrib-
utor more sensitive to the manufacturer’s cost dependent pro-
duction policies.

Finally, the cases defined in Lemma 6 which are described by
boundary controls and no switching points are immediate: the
equilibrium price should be at the maximum value.

C. Time Consistency Considerations

The equilibrium in Stackelberg open-loop games is defined as
strongly time consistent if at a time point its truncated part is
an equilibrium for the subgame, independent of the conditions
regarding state variables at [5]. That is, an equilibrium can be
time inconsistent if during the game when the state variables
change the leader may modify the plan chosen at the beginning
to achieve optimality. Time inconsistency is an important con-
sideration when dealing with either stochastic games character-
ized by continuously observed (updated) and controllable states
or deterministic differential games as the states are always ob-
servable. In our two-period game model, the leader can choose
or modify the control only at the beginning of each period but
not inside the two periods. Therefore, the open-loop equilibrium
in our model is intrinsically strongly time consistent. Specifi-
cally, in the first period, the parties are not able to observe the

system state and reevaluate their optimal responses. There is a
state update at the beginning of the second period, but our game
becomes a deterministic differential game in that period. An
important property ensuring the time consistency of open-loop
Stackelberg equilibria for such a game, referred to as uncontrol-
lable game [22], is that the leader cannot manipulate the equi-
librium through its control variables. This property is explicitly
observed in Theorem 1, where a change of the control variable
of one party does not affect the decision of the other party. Of
course, if we modify the assumptions made in this paper, for
example, if the leader were able to change the inventory charge
during the second period, then the equilibrium would be only
weekly time consistent. As shown in Theorem 1, the first-order
optimality condition of the distributor depends on the inventory
level (state variable), which implies that an open-loop Stackel-
berg equilibrium would be weakly time consistent at the time
interval if the inventory charge could be changed during this in-
terval [5].

V. EXAMPLE AND COMPUTATIONAL RESULTS

Following Fisher et al. [7], [8] examples, we consider a
case when the demand is the same during the entire production
horizon, i.e., its realization is accurately known
by time , if is chosen so that and
thereby at least 20% of the total demand is observed at .
Specifically, consider a uniform distribution, ,

, and , where is the
Dirac delta function. Then, objective function (10) takes the
following form, as shown in the equation at the bottom of
the page, and shown in the first equation at the bottom of
the next page. Next, if
and , then for

and for (see Lemma 6
and Theorem 3), therefore, with the aid of the last expression,
we have equation (24) at the bottom of the next page, where
switching point is a function of as defined by (22).

Under the same uniform distribution, (22) takes the following
form

(25)
where is determined by (11). Applying uniform dis-
tribution to (11), we find the third equation at the bottom of the
next page.
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Thus, (25) takes the following form shown in equation (26)
at the bottom of the page. Though (26) is transcendental, that is
it cannot be resolved explicitly in , one can derive an expres-
sion for by implicitly differentiating (26)
and assuming that depends on . In addition, (26) can be
solved explicitly in . Consequently, given , equi-
librium cost is found by solving (23). Specifically, dif-
ferentiating objective function (defined by (24)) and assuming
again that depends on , we find

(27)

where is obtained
from Lemma 1, and and can be substituted from
(26). If the contract cannot be changed during the production
horizon, then is set equal to when solving (27). Other-
wise, if a change is possible at the end of the first period, then

should be set at maximum, i.e., when solving (27) in
. This implies that the equilibrium price depends not only on

leadership in the supply chain, but also on the type of contract.
We note that (26) and (27) constitute a system of two algebraic
equations in two unknowns, equilibrium inventory charge

and switching point . We next verify numerically that
, and , as

required by Theorem 2.
1) Computational Results: We conduct two numerical

studies, which show the effect of the unit shortage cost and that
of the period duration, respectively, on the switching point and
equilibrium inventory charge. For the first study, we let run

(24)

(26)
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TABLE I
COMPUTATIONAL RESULTS FOR THE FIRST STUDY

over a range of values among which the solution exists, and set
the other parameters as follows:

The corresponding values of the equilibrium
and switching point are described in the following
table. Since the optimal production rate depends on

, which indicates whether the switching
point exists: if , but

, then for
and for (otherwise,

for , see Lemma 6), we also present these
characteristic values in Table I to show that the optimality
conditions hold throughout our experiments.

From Table I, we observe that all the conditions of Theorem 2
are satisfied. Furthermore, as one would expect, the greater the
unit shortage cost, the later the switching point and thereby
the longer the production duration. This increases the inventory
surplus, which the leader makes use of monopolistically by in-
creasing the equilibrium cost he charges, as illustrated in Figs. 3
and 4.

For the second study, we let the unit shortage cost be con-
stant and change the review period . The other parameters are
set as follows:

The results are presented in Table II.

Fig. 3. The inventory charge as a function of the unit backlog cost.

Fig. 4. The switching point as a function of the unit backlog cost.

TABLE II
COMPUTATIONAL RESULTS FOR THE SECOND STUDY

From Table II, we observe that all the conditions of Theorem
2 are satisfied again. Furthermore, the intuition behind the effect
of the review period length is similar to that of the shortage
cost. Specifically, the longer the period, the later the switching
point (the longer the production duration) and the higher the
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Fig. 5. The inventory charge as a function of the review period length.

Fig. 6. The switching point as a function of the review period length.

equilibrium cost charged by the leader for the inventories stored
at his warehouse, as illustrated in Figs. 5 and 6.

Overall, we observe that prolonged review period and thereby
higher uncertainty lead to later switching points, longer produc-
tion periods, and lager inventories. Although increasing stocks
under higher uncertainty is known in static supply chains (see,
for example, [18]), we determine when and how the production
rate should be changed as a function of demand distributions
as a result of intrasupply-chain competition. Such a dynamic
effect of stochastic demands on production is especially impor-
tant as many modern production systems allow for production
to be adjusted at any point of time rather than just once at the
very beginning (as in static models) or at each point of time but
with no updates (as in deterministic differential models).

VI. CONCLUSION

In this paper, we provide analytical results for a two echelon
supply chain involving a manufacturer and a distributor utilizing
inventory outsourcing with an uncertain demand. We assume
that the probability distribution of the demand rate at the dis-
tributor’s site is known, but the inventory level can only be ob-
served by the manufacturer intermittently. The optimal produc-
tion control that minimizes a linear combination of the expected

surplus and shortage costs over the planning horizon is shown to
be piecewise constant. In addition, the optimal production levels
and control switching points can be determined as functions of
the demand rate distribution. We demonstrate that even for the
seemingly simple one-part-type system with a single inventory
review, the inclusion of the random demand still leads to a non-
trivial optimal production control for the manufacturer. As to the
distributor, his charge for handling manufacturer’s inventories
is determined by his leadership in the supply chain and depends
on the remaining number of periods to go. While the desire to
charge as much as possible for handling inventories at the last
period prevails (it corresponds to the severe double marginal-
ization), the distributor reduces the charge (a situation corre-
sponding to the implied double marginalization) when there are
two periods to go. This, in turn, affects the optimal production
policy chosen by the manufacturer. This dynamic effect is due to
the uncertainty at the first production period, which is different
from the second, where the demand is no longer random. Our
numerical computations show that increasing the length of the
first inventory review period, thus higher uncertainty, results in
both larger inventories and higher charges for handling them.

In summary, this paper shows that under intrasupply-chain
competition and stochastic demands the dynamic production
policies depend on demand distributions and the costs that the
distributor charges. These policies are based on precise timing,
which demonstrates the importance of developing supply chain
models employing a continuous-time framework, i.e., a differ-
ential game approach. This paper is only a preliminary step in
analyzing supply chain dynamics under uncertainty. Many is-
sues, such as the price and stock dependency of demands, dif-
ferent types of leadership in the differential game, multiperiod,
and infinite horizon games should be important directions for
future research.

APPENDIX

Proof of Lemma 1: Differentiating the condition
over and taking into account (17), we find

.
Thus, and, therefore, and

for .
Proof of Lemma 2: Consider the following solution for the

state variables , for ;
, for ; ,

for ; and for the co-state vari-
ables
for ; for ;
and for

.
If this solution is feasible and satisfies optimality condi-

tions (19), then it is optimal. The feasibility,
and , is im-
posed in the statement of this lemma. The optimality con-
ditions are verified as follows. It is easy to observe that
because and , we have

for and thus
.

That is, the second optimality condition in (19) holds.
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Similarly,
for , and thus the first optimality condition

in (19) holds. The third condition in (19) is explicit:
for and thus .
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