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Fig. 5. Control comparison of the controllers of [1] and [3].

VII. CONCLUSION

We have shown that the transient response of the controller of [1] re-
covers the response of a high-gain feedback controller without internal
model. On the other hand, the transient response of the controller of
[3] recovers the response of a sliding mode controller without internal
model. These properties show advantage of the designs of [1] and [3]
over other designs for the stabilization of the augmented system of the
plant and the internal model. Because of the connection between sliding
mode and high-gain feedback controllers, the designs of [1] and [3] are
indeed close to each other. The difference between them boils down to
the difference between high-gain feedback and sliding mode control,
where high-gain feedback drives the trajectories towards a slow mani-
fold faster than a sliding mode control driving the trajectories towards a
sliding manifold. This happens at the expense of a larger control signal
for the high-gain feedback controller during the transient period.
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Continuous-Time Replenishment Under
Intermittent Observability

Konstantin Kogan and Matan Shnaiderman

Abstract—In this technical note we study continuous-time stochastic con-
trol of a dynamic production and replenishment system characterized by
bounded control and an additive type of uncertainty. The study is moti-
vated by problems arising in supply chains involving periodic exchange of
information between a manufacturing system (supplier) and a customer
(retailer). As a result, the inventories are only observed periodically while
the replenishment is possible at any point of time. We identify replenish-
ment policies for different operational conditions and show that, even for
one-product-type system, the consideration of random demand over mul-
tiple update periods leads to a non-intuitive, and nontrivial, optimal pro-
duction control.

Index Terms—Continuous replenishment, periodic updates, stochastic
inventory control.

I. INTRODUCTION

Classical multi-period (discrete-time) stochastic inventory problems
are usually treated using the recursive dynamic programming approach
(see, for example, Zipkin [10] for a variety of this type of models).
Classical stochastic inventory problems with continuous inventory up-
dates are commonly treated using the continuous-time dynamic pro-
gramming approach (Hamiltonian-Jacobi-Bellman equation) (see, for
example, the pioneering work of Kimemia [6], Kimemia and Gershwin
[7], Ghosh et al. [3], and Akella and Kumar [1]) and the maximum prin-
ciple, if no updates are available during the planning horizon (e.g., see
Khmelnitsky and Caramanis, [5]; Kogan et al. [8], Kogan and Lou, [9]).

This work considers a continuous stochastic control (inventory re-
plenishment) problem under periodic updates and thus deals with the
challenge of integrating the above streams of research. The problem
is due to a relatively new approach to the allocation of responsibility
in the replenishment process, which is referred to as Vendor Man-
aged Inventory (VMI). As opposed to traditional orders, where the cus-
tomer makes the replenishment decision, the VMI approach implies
that the supplier makes this decision on the customer’s behalf (Harrison
and van Hoek, [4]; Disney and Towill, [2]). The decision is based on
the information, which is transferred between the parties periodically.
Specifically, the updates on the inventory level of the retailer are deliv-
ered periodically to the manufacturer, while the manufacturer who han-
dles the retailer’s inventories can replenish them at any point of time.
The approach, which we suggest to study such a system, is based on: (i)
the recursive discrete-time dynamic programming for over stage global
optimization upon updates and (ii) the continuous-time maximum prin-
ciple for optimizing the Bellman (cost-to-go) function in between the
updates, i.e., at each separate period and thereby stage of dynamic pro-
gramming. As a result, we derive an optimal solution and show that the
optimal control is piece-wise constant and has at most two switching
points at each period. We also discuss the affect of sales lost at the end
of each period on the optimal solution.
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II. STATEMENT OF THE PROBLEM

Consider a manufacturer who produces and supplies a single-
product-type to a retailer. Since the demand for the product is random,
the retailer periodically provides the manufacturer with updated posi-
tion of its inventory. Let � be the index of review periods, and there
will be � such periods, � � �� � � � � � , of length � . Then period � is
determined by time � such that ������ � � � �� , for � � �� � � � � � .
Let the supplier choose a production plan which is a replenishment
policy with respect to the retailer. The replenishment rate (in terms
of the retailer) or the production rate (in terms of the manufacturer),
����, is bounded and controllable, i.e.,

� � ���� � �	 (1)

Given fluid material flow over a fixed production horizon, ��� 
 �, the re-
tailer’s inventory process���� is described by the following dynamics:

���� � ���� 	

�

������

������
���� (2)

for �� � ��� � � � �� , � � �� 
� � � � � � or, if sales of period � are
lost once the period has been completed, i.e., backlogs are limited to
the same period, then

���� � ��
��������	

�

������

������
���� (3)

for �� � ��� � � � �� , � � �� 
� � � � � � .
In (2) and (3), �� is the inventory level at � � �� and 
� is the

realization of a random demand rate, ��, at period �. We denote by
���
�� and ���	� the density and cumulative distribution functions
of the demand respectively. Note that, since no new information will
become available during a period, �, (�� , � � �� � � � � � are unknown
at period �) the determination of how much to produce (replenish) and
when to produce must be made based only on the last inventory update
(review), ����, and before production of period � commences.

The objective is to determine the replenishment rule ���������� �
�� � ��� � � � ��� for each period � � �� � � � � � over the entire
production horizon 
 in order to minimize the expected inventory cost

������� � �

�

�

� �������� (4)

where ���� is a piecewise linear cost function, ������� �
������� 	 �������, and ��, �� are the nonnegative in-
ventory surplus and backlog cost coefficients, respectively,
����� � ��
��������, and ����� � ��
���������.

III. OVER-STAGE OPTIMIZATION APPROACH

We let the production policy during period � be �����, i.e., ����� �
����� for �� � ��� � � � �� , � � �� 
� � � � � � and introduce a new
notation, �� � ������� � � � � ������. We next present the function

����
������� � �

�

���

��

������

� �������� (5)

which is evidently equivalent to the objective function (4), when� � �.
Then the Bellman (cost-to-go) function is

����
���� � ���

�

����
������� � � �� � � � � �	 (6)

Consequently, introducing for convenience, �����	���
���� �

��

������
���������, the principle of optimality straightforwardly

results in the following recursive dynamic programming equations:

����
���� � ���

�
�� � ���	���

��� 	������
�� �

� � �� � � � � �� ������
�� � �	 (7)

The index in the expectation �� implies that the expectation is taken
at period �. In the next sections we show that at each stage � of the
recursive dynamic programming we solve a canonical optimal control
problem to minimize the cost-to-go function with controls �����.

IV. THE IN-STAGE OPTIMIZATION APPROACH

Assume first that there are two periods left to go, i.e., that we are
at period � � �. To proceed, we employ �� that satisfies ������ �
������ 	 ���. To facilitate the presentation, we assume that

� � �� � �� � � � � �	 (8)

Parameter ��, as will be shown below, is an optimal replenishment
level. Therefore, assumption (8) implies that the manufacturer has a
sufficient capacity, � , to provide optimal supplies. In addition, we as-
sume that function ���
�� is positive (i.e. does not vanish) at the
interval ���� ��� ��� ���, where ��� �� � ����
����
� � �� and
����� � ����
����
� � ��. Let � � ���� ���� �� �, � � � � � ,
and denote

� ��� � ���� 	

�

������

�������	 (9)

Then from (5) we obtain (10), shown at the bottom of the next page.
Since, ���� � � ��� � ���� � 
���� or, for the case of lost
sales,���� � ��
�� ���������
����� ��, we have���� �
������ ��� � �����
����. That is, �������������� depends
on � ��� � ����. Denote ���� ��� � ����� � ��������������.
Then employing our notation for �� we find from (7)

������
���� � ���

�
���� � �����	���

���

	�� �� ��� � ����� 	 (11)

Namely (12), shown at the bottom of the next page. This implies that
at step � � � � � of the recursive dynamic programming, we solve
an optimal control problem (12), (9) and (1) to minimize the cost-to-go
function with control �������. To analyze the problem, we construct
the Hamiltonian

� �� ���� ����� �������� � �����������

�
��

�� �� ����
��� ��� �� � 
�� ��

������
�����
���

	
�

�� �� ����
��� ��� �� � 
�� ��

������
�����
���

(13)

and the co-state differential equation for �� � 
�� � � � �� � ���

����� � �
	
�� ����
����� ����

	� ���

� ��� 	 �������
� ���

��������
� ��

� ��� � ���� � �	� �� ��������
	� �������

	

(14)
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Maximizing Hamiltonian (13) we readily observe that, at period���,
the optimal production rate is given by

������� �

�� ���� � �

����� ���� � �

�� ���� 	 �

(15)

for �� � ��
 	 � � �� � ��
 , where the co-state variable ���� is
defined by (14) for �� � ��
 � � � �� � ��
 .

In what follows we assume that

���� �
 ��� � ��
�

�
 � ��� � ��
�
� �� (16)

In Section VI we show that the cost-to-go function ����
���� is

convex and therefore the function �� is convex, which ensures (16).

V. OPTIMAL POLICIES

Following lemmas describe all possible optimal solutions at period
� � � when the initial inventory at this period is non-negative. To
simplify the presentation in this section, we omit the index at ��.

Lemma 1: Assume that ���� � � and �����
 ��� �
��
����
 ��� � ��
���� ����������� � �. If

�
�� �
 ��� � ��
��

�
 ��� � ��
�
� �����������

�

������

������

��� � ����������� �� �� � � (17)

then the optimal solution is

������� � �� � � ��� � ��
� �� � ��
 � � (18)

Otherwise, the solution is

������� �
����� �� � ��
 	 � � ��
�� �� 	 � � �� � ��


(19)

where �� satisfies

����� ���������
�� ��������

� ���������� �� ������������������� �

�
������

�

��� � �������

�
� �� �������������� �

��������
��� �����

(20)

������
��������� � ���� ��������

���� � ���� �� ���� � �
����

�
������

������

��
��

�� �
 �������� ��� �� � ��
�� ���������������

�
�

�� �
 �������� ��� �� � ��
�� ���������������

�
�

��

���������������

��

������

��
��

�� �
 ������ ��� �� � ��
�� ���������

�
�

�� �
 ������ ��� �� � ��
�� ���������

�
������

������

��
��

�� �
 �������� ��� �� � ��
�� ���������������

�
�

�� �
 �������� ��� �� � ��
�� ���������������

����� ����� � �
����

(10)

������
���� � 	
�

	

������

������

��
��

�� �
 �������� ��� �� � ��
 �� ���������������

�
�

�� �
 �������� ��� �� � ��
 �� ���������������

��� �
 ��� � ��
��

(12)
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Lemma 2: Assume that ���� � �. If

�
�� �� ��� � ��� ��

�� ��� � ����
� �����������

� �

� �
�� �� ��� � �����

�� ��� � ����
� ���������� �

then the optimal solution is (19). If

�
�� �� ��� � �����

�� ��� � ����
� ���������� �

� �

� �
�� �� ��� � �����

�� ��� � ����
� ����������

then

�����	� �

���� �� � ��� � 	 � 	�
�� 	� � 	 � �� � ���

(21)

where 	� satisfies

����� ����������
�� ���������

� ����� �� ��������

�
������

�

��� � ���
���

�
� �� ��������

	�������
� �� �� � ��

Lemma 3: Assume that ���� � � and ������ ��� �
�������� ��� � ������� ���������� � �. If

�
�� �� ��� � �����

�� ��� � ����
� ����������

�

������

������

��� � ���
������� �� �� � �

then the optimal solution is

�����	� � �� 	 � ��� � ���� �� � ��� � � (22)

Otherwise, the solution is (21).
Lemma 4: Assume that ���� � 
���� and ������ ��� �

�������� ��� � ������� ���������
 ��� � �. If

����� ���������
�� ��������

� ���������
 ���

�
������

������

��� � ���
���

� 
 ���	��������
	�������

� �� �� � �

(23)

then the optimal solution is (18). Otherwise, the solution is

�����	� �
�� �� � ��� � 	 � 	�
�� 	� � 	 � �� � ���

(24)

where 	� satisfies

����� ���������
�� ��������

� ���������
 ����������� �

�
������

�

�������
���

 ���	�� �

	�������
��� �����

Lemma 5: Assume that ���� � 
���� . If

�
�� �� ��� � �����

�� ��� � ����
� ���������
 ���

� �

� �
�� �� ��� � �����

�� ��� � ����
� ���������


then the optimal solution is (24). Otherwise, if

�
�� �� ��� � �����

�� ��� � ����
� ���������


� �

the optimal solution is (22).
Lemma 6: Assume that � � ���� � 
���� and

�
�� �� ��� � �����

�� ��� � ����
� ���������
 ���

� ��

If

����� ���������
�� ��������

� ���������
 ���

�
������

������

��� � ���
���

� 
 ���	��������
	�������

� �� �� � �

then the optimal solution is (18).
If you have the equation shown at the bottom of the page, then the

solution is (24). Otherwise, if you have the first equation shown at the
bottom of the next page, then

�����	� �

�� �� � ��� � 	 � �� � ��� � 


�


���� �� � ��� � 


�
� 	 � 		

�� 		 � 	 � �� � ���

(25)

����� ���������
�� ��������

� ���������
 ���

�
������

������

��� � ���
���

 ���	��������

	�������
� �� �� � �

� ����� ���������
�� ��������

� ���������
 �� ��

�
������

�������

��� � ���
���

 �� 	� �������

	�������
� �� ��
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where �� satisfies

����� ���������
�� ��������

� ���������� �� ������������������� �

�
������

�

��� � �������

� �� �����������	�� �

	�������
� �� �� � ��

Lemma 7: Assume that � � ���� � 	���
 and

�
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������
 ���

� �

� �
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������
 �� ��

If you have (26), shown at the bottom of the page, then the optimal
solution is (24). Otherwise, if (26) is not met, then the optimal solution
is (25).

Lemma 8: Assume that � � ���� � 	���
 . If

�
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������
 �� ��

� �

� �
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������� �

then the optimal solution is (25). Otherwise, if

�
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������� �

� �

� �
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������


then the optimal solution is

������� �

�� �� � ��
 � � � �� � ��
 � 

�

	���� �� � ��
 � 


�
� � � ��

�� �� � � � �� � ��


(27)

where �� satisfies

����� ���������
�� ��������

� ���������� �� ��������

�
������

�

�����������
� �� ��������

	�������
��� ��

� ��
(28)

Lemma 9: Assume that � � ���� � 	���
 and �����
 ��� �
��
����
 ��� � ��
���� ���������
 � �. If

�
�� �
 ��� � ��
��

�
 ��� � ��
�
� ���������


�

������

�������

���������
����

�� �� � ��

��� �� � �

(29)

then the optimal solution is (22). Otherwise, the solution is (27).
Lemmas 1–9 show that an optimal solution is piecewise constant and

includes at most three production regimes. Specifically, the production
can be switched between the maximum rate, intermediate rate and no
production at all.

VI. GENERALIZATION

The subsequent lemma implies that all the optimal policies deter-
mined in Lemmas 1–9 are valid for any review period. Specifically, we
next show that the dependence of �� on 
 ��� ���
� see ((11)) holds
for any period, i.e., �� depends on 
 ��� � �� � ��	
 �. The proof is
by induction with � denoting the number of periods left to go, rather
than the current period. That is, the current period is � � � � �.

Lemma 10: Assume there are � periods left to go �� � � � ��,
then

�� � �� �
 ��� � �� �	 
 �� � (30)

According to Lemma 10, the dynamic programming (11) takes the
following form:

��������
����

� 
��
�

������ � �����������
���

��� �
 ��� � �� ��
�� �

(31)

����� ���������
�� ��������

� ���������
 �� ��

�
������

�������

��� � �������

 �� 	� �������

	�������
� �� ��

� �

����� ���������
�� ��������

� ���������
 �� ��

�
������


 �� ��

��� � �����

 �� 	� �������

	�������
� �� ��

� �

(26)
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This implies that at step � ���� of the recursive dynamic program-
ming, we solve an optimal control problem to minimize the cost-to-go
function with controls ���������.

We next index the periods in the natural order, i.e., index � im-
plies the current period, � � �� � � � � � , and prove the convexity of
the Bellman function (6).

Theorem 1: The function ����
���� is convex in ���� for every

� � � � � .
Proof: To prove the theorem we show that for every

����
� � ����

� � ������ and every � � ��� �	

�� ��
���
� � ��� ������

� � ��� �
���
�

���� ���� �
���
� � (32)

Let����
� � ����

� � ������ and � � ��� �	, it can straightforwardly
be shown with the corresponding Hessian that G, as well as its expec-
tation is convex in ������

�

������
���	�
	�, i.e.

� � ����� � ��� ������� ��
���
� � ��� ������

�

� �� � ������
���
� � ��� ��� � ������

���
�

(33)
for every two single period policies ����� ���� and every two initial
conditions ����

� � ����
� .

Now consider two production plans �
��� �

������ ������� � � � � ����	 and ���� � ������ ������� � � � � ����	.
The combination ��������������� is a production plan as well,

and we have
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� ������� ������� �

�
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� �
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� ���� ��
� �
���� ����

� �

Therefore we obtain
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where �� ��� denotes an optimal policy while the initial inventory is
equal to �.

Similar to Lemmas 1–9, the optimal policies corresponding to the
negative initial inventories are formulated, which along with Theorem
1 implies that the multi-period problem (1)–(4) has an optimal solu-
tion, �����, with at most two switching points and three production
rates ��� ��� ��. We next focus on the effect of the limited backlogs.
Specifically, we show that in such a case it is no longer optimal to pro-
duce at the maximum rate � , as determined by the corresponding poli-
cies extracted from Lemmas 1–9 in Theorem 2.

Theorem 2: Assume that the sales are lost at the end of each period,
�� � 

��� ��������� ��, � � � � � . The optimal solution of
the multi-period problem (1)–(4) is determined by (21), (22), (25) for
the case of �� � �� � ��� and (27).

VII. CONCLUSION

In this work we address a stochastic, optimal control problem of con-
tinuous inventory replenishment when the information on inventories
is transmitted periodically. We derive the optimal policies which are
classified into possible cases based on the level of the observed inven-
tory. We show that the cost-to-go (Bellman) function is convex under
any production policy. Furthermore, we prove that the optimal solu-
tion is piecewise constant with at most two switching points at each
period. Specifically, the production (replenishment) rate at a period is
always either equal to zero, or to the maximal possible rate, or to an
intermediate value. The intermediate value is a parameter solely de-
termined by the distribution of the demand at the period and the unit
surplus/shortage costs. Moreover, if the sales are lost at the end of each
period, the optimal production rate reduces to only two levels so that
the production at a maximum rate is not optimal.
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