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Abstract

This paper focuses on dynamic, continuous-time production control problems in the fashion industry. Similar to the
classical news-vendor problem, we consider a single product-type and the cumulative demand for items is not known until
the end of the production horizon and therefore must be forecasted. Since there are periodic updates before a single selling
season, actual demand during a period of time can only be determined by the end of the period. If the overall demand is
overestimated, excessive inventory holding and production costs are paid and surpluses are sold at low prices at the end of
the production horizon. If it is under-estimated, then sales are lost. The objective is to dynamically determine production
orders which minimize overall expected costs. Since the optimal feedback for such a problem is characterized by thresholds
evolving with time and system states, there is a significant computational burden in determining them. With the aid of the
variational analysis and a decomposition, we derive a closed-form solution for the thresholds. A numerical study carried
out to compare the decomposition and straightforward simulation-based solutions indicates the high accuracy of the sug-
gested approach while the computational burden is dramatically reduced.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Inventory management is a key business function for companies operating with inventories that may
quickly become obsolete, spoil, or have a future that is uncertain beyond a single period. This paper is moti-
vated by the problem arising in fashion industry or in companies, which supply various garment accessories
for production of fashion industry goods. The demand for these accessory items is unknown prior to a selling
season. Once the season starts it is too late to produce, since fashion good manufacturers cannot halt their
production to wait for deliveries. To prevent loss of sales and clients, accessory manufacturers tend to keep
large stocks of end items. This, however, ties up sizeable amounts of capital.
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Forecasting demand is an efficient way of reducing uncertainty and excessive inventories and manufacturers
will expend much time and effort at professional exhibitions of leading fashion designers in attempt to foresee
future trends and accessory needs in the upcoming season. In addition catalogs and samples are periodically
sent to fashion good manufacturers in order to update demand forecasts and get advance orders.

A typical approach to incorporating demand uncertainty is to assume a random but known and stationary
distribution for the demand in each demand period. Porteus (1990) gives examples of this approach which
commonly results in base stock models. In practice, these models are applied, for example, to fashion or sea-
sonal products by large international apparel brands when the products are characterized by the supply lead-
time comparable to the length of the selling period (Fuloria and Wadhwa, 1995). In this paper, since we focus
on this type of seasonal goods, we assume that demand is independent (stationary) across time, as is the case in
many other studies devoted to seasonal goods (e.g., Bitran et al., 1997; Federgruen and Heching, 1999; Feng
and Gallego, 1995; Gallego and van Ryzin, 1994).

The problem under discussion fits the well-known class of single-period inventory models, which are fre-
quently referred to as news vendor or newsboy problems. An extensive literature review on various extensions
of the classical newsboy problem and related inventory control models can be found in Khouja (1999) and
Silver et al. (1998). Although the importance of extensions to models with more than one period to prepare
for the selling season has been stressed in this literature, only problems with one additional order or urgent
reorder have been solved (see, for example, Veinott, 1966 and Wright, 1969). Lau and Lau (1998) considering
a single-period newsboy type product which can be ordered twice during a period, show that the decision is
substantially more complicated than for the simple one-order-per-period newsboy problem typically solvable
with a base stock policy (ordering up to a certain level). They suggest several heuristic decision rules. Murray
and Silver (1966), Hausman and Peterson (1972), Bitran et al. (1986) and Matsuo (1990) consider a number of
sub-periods to prepare for the selling season. These models commonly utilize special product and demand
parameters to optimize operations over each sub-period. This results in either a stochastic mixed-integer or
dynamic programming. Since both outcomes pose significant computational problems, heuristics are com-
monly suggested. The heuristics provide various computational shortcuts based on (i) limiting the ability to
adjust production in response to demand updates, (ii) reducing a multi-period problem to a single period prob-
lem or to a number of simplified problems (multi-phase heuristics), and (iii) replacing stochastic programming
with a deterministic integer programming.

In contrast to these periodic review models with finite horizons, there is a stream of research studies on the
use of base stock policies with advance demand information (BSADI) for continuous review of production/
inventory systems operating over an infinite planning horizon. Policies of this type have been investigated in a
number of papers (see, for example, Hariharan and Zipkin, 1995; Toktay and Wein, 2001; Karaesmen et al.,
2004; Wijngaard, 2004). Ozer and Wei (2004) address periodic review, capacitated, finite and infinite horizon
production faced by a manufacturer who has the ability to obtain advance demand information. They show
that for such production systems, even when fixed costs are zero, base stock levels or thresholds evolve over
time with a system’s state. This radically affects the computational burden for a straightforward, backward
induction algorithm that they use to numerically solve the problem. Consequently, developing simple-to-cal-
culate, closed forms for the thresholds to provide a good approximation of the optimal solution is a challeng-
ing contribution to both engineering and operations research literature.

In this paper we deal with a capacitated system operating over a finite planning horizon. Similar to the
above newsboy type papers, we consider inventory costs incurred only by the end of the planning horizon (sin-
gle-review). In contrast to what appears in the literature, this paper derives a closed form solution for thresh-
olds evolving over a continuous-time finite horizon under periodic demand updates. As a result, heavy
numerical computations of the thresholds can be avoided. The derivation of the closed form solutions is
accomplished with a decomposition method. The general problem presented in Section 2 is decomposed into
two sub-problems. First, a lower bound is derived by minimizing the expected cost over all possible realiza-
tions without imposing the non-anticipativity condition (Section 3). This implies that the control which could
provide such a cost on-line does not always exist. Then we consider an on-line control at a time point; impose
non-anticipativity (which increases the expected cost found at the first step) at this time point; and apply a
small control variation to minimize the change in the cost function. The minimization results in a feedback
policy (Section 4). Section 5 presents an example. As shown in our simulation results (Section 6), this lower
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bound-guided solution method provides a very good approximation to the optimal solution. Section 7 sum-
marizes the results.

2. The model

Consider a manufacturing system producing a single product-type to satisfy a cumulative demand, d, for
the product-type by the end of a production horizon, T. The production horizon T is subdivided into K with
not necessarily equal length periods, defined by points tk, k = 1, . . .,K, t0 = 0, tK = T. The demand for a period
k, dk is a random parameter for which realization, Dk, is known (updated), only at the end of the period. As
discussed in the introduction, we assume that dk are independent parameters characterized by the probability
density function fk(Dk) and cumulative distribution Fk(Dk) with mean lk and standard deviation rk. The dif-
ference between the inventory level X(tk) and the updated demand Dk is assessed at the end of period k and the
production load u(t) of the system is decided for the next time period tk 6 t < tk+1. This implies that the con-
trol function u(t) generally depends on realization n = hD1, . . .,dki, u(t,n).

Denote the set of all possible realizations {n} over the entire production horizon as R and the set of all real-
izations n, n 2 R, which coincide with a realization from the beginning of the production horizon through time
period k, as R(k,n). That is,
Rðk; nÞ ¼ fn0 ¼ hD01; . . . ;D0Kijn
0 2 R and D0j ¼ Dj; for 1 6 j 6 kg: ð1Þ
Thus, R(k,n), consists of only those realizations that still can happen in future if by time tk we observe the
realization n. Therefore, the control is feasible if in addition to the boundary loading constraint:
0 6 uðt; nÞ 6 1; n 2 R; 0 6 t 6 T ; ð2Þ

we have non-anticipativity
uðt; nÞ ¼ uðt; n0Þ for all n0 2 Rðk; nÞ; 0 6 t < tkþ1: ð3Þ

Then the inventory level, X(t), by time t for realization n, X(t,n) is described by the following equation:
_X ðt; nÞ ¼ Uuðt; nÞ; X ð0; nÞ ¼ X ð0Þ; ð4Þ
where U is the maximum production rate.
There are operational costs associated with the production process (4). Specifically, at each t, the system

incurs a production cost, cu(t,n) and an inventory holding cost, hX(t,n). Penalties are paid for backlogs
(under-production) at the end of the production horizon T, p�ðX ðT ; nÞ �

PK
k¼1DkÞ, when X ðT ; nÞ�PK

k¼1Dk < 0 and for overproduction, pþð
PK

k¼1Dk � X ðT ; nÞÞ, when X ðT ; nÞ �
PK

k¼1Dk > 0.
Our goal is to determine production loads u(t,n) for each realization n, n 2 R, so that the expected total

cost, J, is minimized over the production horizon:
J ¼ ER

Z T

0

½hX ðt;nÞþ cuðt;nÞ�dtþ p�max 0;
XK

k¼1

Dk�X ðT ;nÞ
( )

þ pþmax 0;X ðT ;nÞ�
XK

k¼1

Dk

( )" #
!min;

ð5Þ
where ER[Æ] is the expectation operator taken over all realizations R. From (5) we observe that in order to
derive a lower bound by minimizing the expected cost over all possible realizations R without imposing the
non-anticipativity condition (3), we need to identify a deterministic relationship between each realization n,
cumulative production demand

PK
j¼1Dj and optimal production load u(t,n), tk�1 6 t 6 T. This relationship

is studied in Section 3.

3. The relationship between optimal production loads and cumulative demands

To derive the relationship between the optimal production load and demand, we assume that loading u(t,n)
has been made up to point tk�1, and

PK
j¼1Dj is known. Then problem (1)–(5) takes the following deterministic

form:



136 K. Kogan, A. Herbon / European Journal of Operational Research 184 (2008) 133–146
Z T

tk�1

½hX ðt; nÞ þ cuðt; nÞ�dt þ p�max 0;
XK

j¼1

Dj � X ðT ; nÞ
( )

þ pþmax 0;�
XK

j¼1

Dj þ X ðT ; nÞ
( )

! min

ð6Þ

subject to
X ðt; nÞ ¼ X ðtk�1; nÞ þ
Z t

tk�1

Uuðs; nÞds; ð7Þ

0 6 uðt; nÞ 6 1; tk�1 6 t 6 T : ð8Þ

Applying the maximum principle (see, for example, Maimon et al., 1998), we construct the Hamiltonian:
HðtÞ ¼ �cuðt; nÞ � hX ðt; nÞ þ wðtÞUuðt; nÞ; ð9Þ

where the multiplier w (t) is referred to as a costate variable and satisfies the following costate equation:
_wðtÞ ¼ h ð10Þ

with transversality (boundary) constraint:
wðT Þ ¼

p�; if
PK
j¼1

Dj > X ðT ; nÞ;

�pþ; if
PK
j¼1

Dj < X ðT ; nÞ;

p 2 ½�pþ; p��; if
PK
j¼1

Dj ¼ X ðT ; nÞ:

8>>>>>>>><
>>>>>>>>:

ð11Þ
According to the maximum principle, the Hamiltonian is maximized for each t by the optimal controls u(t,n).
Therefore, by considering only control-dependent terms of the Hamiltonian we obtain:
uðt; nÞ ¼
1; if wðtÞ > c

U ;

w 2 ½0; 1�; if wðtÞ ¼ c
U ;

0; if wðtÞ < c
U :

8><
>: ð12Þ
Thus under the optimal solution, the system can be idle wðtÞ < c
U

� �
; work with maximum load wðtÞ > c

U

� �
;

or enter the singular regime wðtÞ ¼ c
U

� �
which is characterized by an intermediate load between 0 and 1. Fur-

thermore, by differentiating wðtÞ ¼ c
U over an interval of time, we find that _wðtÞ ¼ 0, which contradicts Eq.

(10), i.e., the singular regime cannot ever occur over an interval of time and, thus, condition (12) simplifies to:
uðt; nÞ ¼
1; if wðtÞ > c

U ;

0; if wðtÞ 6 c
U :

(
ð13Þ
Consequently, a straightforward non-production condition is as follows.

Lemma 1. Given problem (6)–(8) with inventory level at the end of a period, k � 1, X(tk�1,n) and cumulative

demand
PK

j¼1Dj, if X ðtk�1; nÞP
PK

j¼1Dj, then it is optimal not to produce, u(t,n) = 0 for tk�1 6 t 6 T.

Proof. The proof is immediate as there is no longer sense to produce if X ðtk�1; nÞP
PK

j¼1Dj. h

We next distinguish between two production systems: (a) a system with high unit under-production penal-
ties relative to the unit production cost per time unit plus unit holding cost over the entire production horizon,
i.e.,
p� P
c
U
þ hT ð14Þ
and (b) a system with moderate under-production penalties, c
U < p� < c

U þ hT . Note, that if under-production
penalties are so low that p� 6 c

U, then production is not profitable at all. The next two lemmas derive an opti-
mal solution for the system with high penalties for under-production.
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Lemma 2. Given problem (6)–(8) with inventory level at the end of a period, k � 1, X(tk�1,n), cumulative demandPK
j¼1Dj and p� P c

U þ hT , if X ðtk�1; nÞ <
PK

j¼1Dj 6 X ðtk�1; nÞ þ UðT � tk�1Þ, then the optimal production load

is determined by
uðt; nÞ ¼
0; for tk�1 6 t < t�

1; for t� 6 t 6 T

�
; ð15Þ
where
t� ¼ T �
PK

j¼1Dj � X ðtk�1; nÞ
U

: ð16Þ
Proof. The proof is presented in the Appendix. h

Note, that if we relax the high under-production penalty condition p� P c
U þ hT to a moderate level

c
U < p� < c

U þ hT , then the optimal solution determined by Lemma 2 will remain the same if inequality
c
U
þ hðT � t�Þ 6 p� ð17Þ
still holds, i.e., t* P t 0, where
t0 ¼ c
hU
þ T � p�

h
: ð18Þ
Lemma 3. Given problem (6)–(8) with inventory level at the end of a period, k � 1, X(tk�1,n), cumulative demandPK
j¼1Dj and p� P c

U þ hT , if
PK

j¼1Dj > X ðtk�1; nÞ þ UðT � tk�1Þ, then the maximum load is optimal over the

remaining production horizon, u(t,n) = 1 for tk�1 6 t 6 T.
Proof. The proof is contained in the Appendix. h

Similar to Lemma 2, we note that condition
�hðT � tk�1Þ þ p� >
c
U

ð19Þ
holds for a moderate under-production penalty system if t 0 6 tk�1.
Two important facts follow from Lemmas 1–3. First, the relationships between the optimal production load

and a demand realization, n, are very similar for both high and moderate penalty systems. Moreover, any
moderate penalty system becomes a high penalty one starting from a point, tk. Therefore, to avoid excessive
mathematical expressions, we further focus on a high under-production penalty system. The second fact which
immediately follows from Lemmas 1–3 is that if the anticipativity constraint is relaxed, the optimal production
load depends on the current inventory level and cumulative demand

PK
j¼1Dj, rather than its sequence. There-

fore to derive a lower bound of (5), we can redefine n as n ¼
PK

j¼1Dj. Let n0 ¼
PK

j¼1D0j, then conditions (1) and
(3) can now be replaced with
Rðk; nÞ ¼ all n0 2 R such that
Xk

j¼1

D0j ¼
Xk

j¼1

Dj

( )
; ð20Þ

X ðt; nÞ ¼ X ðt; n0Þ; n0 2 Rðk; nÞ; tk 6 t < tkþ1; ð21Þ
respectively.

4. Feedback policy

Given inventory level at the end of a period, k � 1, X(tk�1,n) and realized cumulative demand
Pk�1

j¼1 Dj,
based on the optimal relationship derived in Lemmas 1–3 and conditions (20) and (21), the expectation oper-
ator in objective function (5) results in
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J L ¼ ERðk�1Þ;n

Z T

0

½hX ðs; nÞ þ cuðs; nÞ�dt
� �

�
Z 1

X ðtk�1;nÞþUðT�tk�1Þ�
Pk�1

j�1

Dj

p� X ðtk�1; nÞ þ UðT � tk�1Þ � w�
Xk�1

j¼1

Dj

 !
/kðwÞdw

þ
Z X ðtk�1;nÞþUðT�tk�1Þ�

Pk�1

j�1

Dj

X ðtk�1;nÞ�
Pk�1

j�1

Dj

p X ðtk�1; nÞ þ UðT � t�Þ � w�
Xk�1

j¼1

Dj

 !
/kðwÞdw

þ
Z X ðtk�1;nÞ�

Pk�1

j�1

Dj

�1
p X ðtk�1; nÞ � w�

Xk�1

j¼1

Dj

 !
/kðwÞdw; ð22Þ
where w ¼
PK

j¼kD0j, /k(w) is the probability density function obtained as a convolution of the probability den-
sity functions fj(Dj) over periods j = k to j = K. If, for example, the popular normal distribution is employed to
describe demands, then /k(w) is normal as well. The cumulative function of /k(w) is denoted by Uk(w). The
mean and the standard deviation of these functions are determined straightforwardly as, lk + lk+1 + � � � + lK,
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

k þ r2
2 þ � � � þ r2

K

p
, respectively.

Expression (22) is a lower bound of the objective function (5), since it is obtained by minimizing the
expected cost over all possible realizations without imposing the non-anticipativity condition. This implies
that the control which could provide such a cost on-line does not always exist.

We next consider an on-line control at a time point t, u(t,n) and impose non-anticipativity (which increases
the lower bound (22)) at this time point. Similar to the deterministic maximum principle, we derive optimality
conditions by considering a small variation of the optimal control du(t,n) to minimize the change in the lower
bound.

Given update information at the end of a period, k � 1, Dk�1 (and, thus,
Pk�1

j¼1 Dj), inventory level X(tk�1,n)
and a control, u(t,n), tk�1 6 t < tk, we apply a needle, e, control variation for the realization n at point t:
duðs; nÞ ¼
du; if t 6 s 6 t þ e;

0; otherwise:

�
ð23Þ
Then according to (3) we have u(s,n) = u(s,n 0) for all n 0 2 R(k � 1,n), tk�1 6 s < tk, and therefore
du(s,n) = du(s,n 0) for all n 0 2 R(k � 1,n), tk�1 6 s < tk. This, by taking into account (23), results in
duðs; nÞ ¼ duðs; n0Þ for all n0 2 Rðk � 1; nÞ; 0 6 s 6 T : ð24Þ

Consequently, the influence of variation (23) and (24) on the inventory level X(t,n) is
dX ðs; n0Þ ¼
eUdu; if s > t

0; otherwise

�
for all n0 2 Rðk � 1; nÞ: ð25Þ
The optimality conditions derived by the variation for problem (1)–(4) and (22) are summarized in the follow-
ing lemma.

Lemma 4. Given inventory level at the end of a period, k � 1, X(tk�1,n) and cumulative demand update
Pk�1

j¼1 Dj,

the optimal control for tk�1 6 t < tk is determined by
uðt; nÞ ¼ 1; if ukðt; nÞ >
c
U
; uðt; nÞ ¼ 0; if ukðt; nÞ 6

c
U
; ð26Þ
where ukðt; nÞ ¼ �hðT � tÞ þ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ
R tk

tk�1
Uuðs; nÞds�

Pk�1
j¼1 Dj

� 	
þ

pþ
R tk

tk�1
Uuðs; nÞds/k X ðtk�1; nÞ þ

R tk

tk�1
Uuðs; nÞds�

Pk�1
j¼1 Dj

� 	
for k < K and tk�1 6 t 6 T and ukðt; nÞ ¼

�hðT � tÞ þ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ
R tk

tk�1
Uuðs; nÞds�

Pk�1
j¼1 Dj

� 	
for k = K and tk�1 6 t 6 T.
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Proof. The proof is presented in the Appendix. h

Based on the optimality conditions derived in Lemma 4, we now can determine feedback control. Similar to
the analysis of the deterministic version (6)–(8), we determine three types of solutions in the following three
lemmas, which correspond to Lemmas 1–3. Specifically, Lemma 5 derives a condition on the relationship
between the current inventory level X(tk�1,n); latest demand update

Pk�1
j¼1 Dj; system costs h, c, p+, p�; and

the planning horizon T under which non-production is most advantageous along the entire period
tk�1 6 t < tk.

Lemma 5. Given inventory level at the end of a period, k � 1, X(tk�1,n) and cumulative demand update
Pk�1

j¼1 Dj.

If Thþ c
U � p� P htk � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tk�1Þ �

Pk�1
j�1 Dj

� 	
, then condition (26) is satisfied by

u(t,n) = 0 for tk�1 6 t < tk.

Proof. Consider the following non-production solution for system (2), (4) and (A4)
uðt; nÞ ¼ 0 for tk�1 6 t < tk; X ðtk; nÞ ¼ X ðtk�1; nÞ; ukðT ; nÞ ¼ ukðtk�1; nÞ þ hðT � tk�1Þ: ð27Þ� 	

By setting ukðtk�1Þ ¼ �hðT � tk�1Þ � p� þ ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ �

Pk�1
j¼1 Dj , we observe that

solution (27) is feasible with respect to (2), (4) and (A4) and meets the idling condition from Lemma 4 for

tk�1 6 t < tk if ukðtkÞ 6 c
U, i.e., if �hðT � tkÞ þ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ �

Pk�1
j¼1 Dj

� 	
6

c
U, as

stated in the lemma. h

In contrast to Lemmas 5 and 6 presents a closed form solution characterized by a breaking point, ts, so that
the production control for period tk�1 6 t < tk changes at this point from no production to the maximum load.

Lemma 6. Given inventory level at the end of a period, k � 1, X(tk�1,n) and cumulative demand update
Pk�1

j¼1 Dj.

If
tk�1h� ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tk�1Þ �
Xk�1

j¼1

Dj

 !

þ IpþUðtk � tk�1Þ/k X ðtk�1; nÞ þ Uðtk � tk�1Þ �
Xk�1

j¼1

Dj

 !

6 Thþ c
U
� p� < htk � ðp� þ pþÞUk X ðtk�1; nÞ þ Uðtk � tkÞ �

Xk�1

j¼1

Dj

 !
;

then condition (26) is satisfied by
uðt; nÞ ¼
0; for tk�1 6 t < tS ;

1; for tS
6 t < tk;

�

where
ts ¼ T þ c
hU
� ukðT ; nÞ

h
; I ¼

0; if k ¼ K;

1; otherwise;

�

and
ukðT ; nÞ ¼ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tsÞ �
Xk�1

j¼1

Dj

 !

þ pþUðtk � tsÞ/k X ðtk�1; nÞ þ Uðtk � tsÞ �
Xk�1

j¼1

Dj

 !
for k < K;

ukðT ; nÞ ¼ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tsÞ �
Xk�1

j¼1

Dj

 !
for k ¼ K:



140 K. Kogan, A. Herbon / European Journal of Operational Research 184 (2008) 133–146
Proof. Consider a solution for system (2), (4) and (A4), which consists of no production until a breaking
point, ts, followed by maximum load production:
uðt; nÞ ¼
0; for tk�1 6 t < tS

1; for tS
6 t < tk

�
;X ðtk; nÞ ¼ X ðtk�1; nÞ þ Uðtk � tsÞ; and ukðT ; nÞ ¼

c
U
þ hðT � tsÞ:

ð28Þ

Using (28) we determine
ts ¼ T þ c
hU
� ukðT ; nÞ

h
; ð29Þ
where
ukðT ; nÞ ¼ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tsÞ �
Xk�1

j¼1

Dj

 !

þ pþUðtk � tsÞ/k X ðtk�1; nÞ þ Uðtk � tsÞ �
Xk�1

j¼1

Dj

 !
for k < K:
Solution (28) and (29) is feasible and meets (26) for tk�1 6 t < tk if tk�1 6 ts < tk. Using (29) the right-hand
condition, ts < tk, becomes ts ¼ T þ c

hU �
ukðT ;nÞ

h < tk, that is,
T þ c
hU
� p�

h
þ pþ þ p�

h


 �
Uk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tsÞ �

Xk�1

j¼1

Dj

 !

� pþ

h
Uðtk � tsÞ/k X ðtk�1; nÞ þ Uðtk � tsÞ �

Xk�1

j¼1

Dj

 !
< tk:
This condition holds if in the limit case, ts = tk, we have:
tk > T þ c
hU
� p�

h
þ pþ þ p�

h


 �
Uk X ðtk�1; nÞ þ UðT � tkÞ �

Xk�1

j¼1

Dj

 !
;

as stated in the lemma. Similarly, the other condition of the lemma is obtained from tk�1 6 ts, i.e.,
T þ c
hU
� p�

h
þ pþ þ p�

h


 �
Uk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tk�1Þ �

Xk�1

j¼1

Dj

 !

� pþ

h
Uðtk � tsÞ/k X ðtk�1; nÞ þ Uðtk � tsÞ �

Xk�1

j¼1

Dj

 !
P tk�1: �
Lemma 7 complements conditions of Lemmas 5 and 6. It provides a relationship between the system
parameters under which production with maximum load is beneficial along the entire period tk�1 6 t < tk.

Lemma 7. Given inventory level at the end of a period, k � 1, X(tk�1,n) and cumulative demand update
Pk�1

j¼1 Dj.
If Thþ c
U
� p� < tk�1h� ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tk�1Þ �

Xk�1

j¼1

Dj

 !

þ IpþUðtk � tk�1Þ/k X ðtk�1; nÞ þ Uðtk � tk�1Þ �
Xk�1

j¼1

Dj

 !
;

then condition (26) is satisfied by u(t,n) = 1 for tk�1 6 t < tk.
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Proof. Consider the maximum load solution for system (2), (4) and (A4),
uðt; nÞ ¼ U for tk�1 � t 6 tk; X ðtk; nÞ ¼ X ðtk�1; nÞ þ Uðtk � tk�1Þ; and

ukðT ; nÞ ¼
c
U
þ hðT � tk�1Þ: ð30Þ
As with Lemmas 5 and 6, by substituting (A4), we determine w(tk�1), which is feasible and meets the full-load
condition from Lemma 4 if wðtk�1Þ > c

U, which readily results in the condition stated in the lemma. h

Lemmas 5–7 present conditions which involve functions of the current inventory level and demand update.
Let zk ¼ X ðtk�1; nÞ �

Pk�1
j¼1 Dj, (p+ + p�)/k(zk + U(T � tk) + U(tk � tk�1)) P �p+U(tk � tk�1)d/k(zk +

U(tk � tk�1))/dzk, threshold ak satisfy Thþ c
U � p� ¼ htk � ðpþ þ p�ÞUk ak þ UðT � tkÞð Þ, threshold bk satisfy
Thþ c
U
� p� ¼ tk�1hðpþ þ p�ÞUk bk þ UðT � tkÞð Þ � þIpþUðtk � tk�1Þ/kðbk þ Uðtk � tk�1ÞÞ;

ekðtÞ ¼
0; for tk�1 6 t < tS

1; for tS
6 t < tk

� ð31Þ
and ts be determined by (29), where I ¼ 0; if k ¼ K
1; otherwise

�
. Then the closed form control derived in Lemmas 5–7

can be presented in an explicit threshold form of combined ordinary and integral feedback policy for
tk�1 6 t < tk, k = 1, . . .,K:
uðt; nÞ ¼

0; if X ðtk�1; nÞ �
Pk�1

j¼1

Dj P ak;

ekðtÞ; if bk 6 X ðtk�1; nÞ �
Pk�1

j¼1

Dj < ak;

1; if X ðtk�1; nÞ �
Pk�1

j¼1

Dj < bk:

8>>>>>>>><
>>>>>>>>:

ð32Þ
5. Example

Consider a production horizon of six weeks, each week containing five working days, i.e., T = 30 working
days. The horizon is subdivided into six periods, each of which is five days long. Production demand for each
period (week) is assumed to follow normal probability distribution with a mean of 250 product units and a
standard deviation of 20 units. The maximum daily production rate is 60 units. Initial inventory X(0) is ten
units. Surplus (p+) and shortage (p�) costs are $0.02 and $0.1 per product unit respectively. Production (c)
and product unit inventory holding (h) costs are $1 and $0.001 per time unit, respectively.

We denote the left-hand side of the Lemma 6 condition as
LHSk ¼ tk�1h� ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ Uðtk � tk�1Þ �
Xk�1

j¼1

Dj

 !

þ IpþUðtk � tk�1Þ/k X ðtk�1; nÞ þ Uðtk � tk�1Þ �
Xk�1

j¼1

Dj

 !
and the right-hand side as
RHSk ¼ htk � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ �
Xk�1

j¼1

Dj

 !
:

The central part of this condition is Thþ c
U � p� ¼ �0:05333. Then the optimal control determined by Lem-

mas 5–7 takes the following form:



Table 1
Computation results for the example

rk lk ts LHSk RHSk u(t) Dk�1 X(tk�1) tk�1

Pk�1
j¼1 Dj

48.9897 1500 – �0.12000 �0.0647 0 0 10 0 0
44.7213 1250 5.5178 �0.08485 0.010 e2(t) 230 10 5 230
40 1000 – �0.00209 0.015 1 300 278.9267 10 530
34.6410 750 – 0.00657 0.020 1 250 578.9267 15 780
28.2842 500 20.431 �0.08161 0.025 e5(t) 170 878.9267 20 950
20 250 25.384 �0.08005 0.030 e6(t) 230 1153.051 25 1180
– – – – – – 220 1430.000 30 1400
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uðtÞ ¼
0; if RHSk P 0:05333;

ekðtÞ; if LHSk 6 0:05333 < RHSk;

1; if LHSk > 0:05333;

8><
>:
where ek(t) is determined by (31). Breaking points, ts, are found by solving Eq. (29) with the aid of the GOAL
SEEK function of EXCEL.

Table 1 implies that u(t) = 0 for 0 6 t < 5 is calculated when there is still no demand update. By the end of
this period, the first update results in D1 = 230 units. The control for the second period is u(t) = 0 for
5 6 t < 5.5178, u(t) = 1 for 0.5178 6 t < 10 and it takes into account the update for the previous period. Cor-
respondingly, u(t) = 1 for 10 6 t < 20; u(t) = 0 for 20 6 t < 20.431; and u(t) = 1 for 20.431 6 t < 25. In the last
periodu(t) = 0 for 25 6 t < 25.384 and u(t) = 1 for 20.384 6 t 6 30, the total inventory level results in 1430
units and the total demand reaches 1400 units.
6. Simulation analysis

In this section we use simulation to assess the suggested decomposition approach. This is accomplished in
two different ways.

First, we compare the suggested approach with the optimal solution by determining optimal thresholds a�k
via a full search so that the cost function (5) is minimized. As in Eq. (32), we use a feedback policy determined
by the optimal thresholds,
uðt; nÞ ¼

0; if X ðtk�1Þ �
Pk�1

j¼1

Dj P a�k ;

ekðtÞ; if a�k�1 � Uðtk � tk�1Þ 6 X ðtk�1Þ �
Pk�1

j¼1

Dj < a�k ;

1; if X ðtk�1Þ �
Pk�1

j¼1

Dj < a�k � Uðtk � tk�1Þ;

8>>>>>>>>><
>>>>>>>>>:

tk�1 6 t < tk: ð33Þ
As in Ozer and Wei (2004), this feedback policy triggers at each period a production order u(t,n), tk�1 6 t < tk

to increase the inventory position (compared to the demand realized) to a level as close as possible to that
period’s threshold a�k , i.e., ek(t) is defined by (32), and tS is as follows:
tS ¼ tk �
a�k � X ðtk�1Þ �

Pk�1
j¼1 Dj

� 	
U

: ð34Þ
A backward induction algorithm locates optimal thresholds, a�k , by simulating various demand realizations
first to determine a�K�1 which provides minimum expected cost (5) with policy (33), then to determine a�K�2

and so on. This simulation-based full search induces an enormous computational burden. For example, it
takes at least 10 hours to calculate an optimal solution even when there are only two demand updates
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(K = 3). In comparison, the suggested method requires only two minutes at most to calculate the thresholds.
Therefore, in addition to the comparison of the suggested method with the optimal solution (which is provided
only for small K), we calculate the corresponding lower-bound (22).

We studied more than 200 instances, with different relationships between inventory holding, surplus and
shortage costs, update periods and period lengths. Table 2 presents the results for (i) eight-day (long) and
four-day (short) update periods; (ii) normal demand probability density with small variance N(250,20) for
long update periods and Nð125;

ffiffiffiffiffiffiffiffi
200
p

Þ for short update periods; normal demand probability density with large
variance N(250,50) for long update periods and Nð125;

ffiffiffiffiffiffiffiffiffiffi
1250
p

Þ for short update periods; (iii) over-capacity
with a production rate of 40 product units per day and under-capacity at 30 product units per day.

From Table 2 we observe that the solution obtained with the decomposition approach improves dramat-
ically with the number of updates, K (see Fig. 1, which illustrates typical production conditions). Moreover,
even under the worst-case production conditions of short update periods with large variance of demands
and over-capacity (which are characterized by a 15.13% gap between the average cost obtained with the
Table 2
Relative gap, %, between the objective function value obtained with the decomposition approach and the lower bound

K 2 3 4 5 6 7 8 9 10

Long period, small variance of demand, over-capacity
4.65 (0.54) 3.95 2.00 1.51 1.12 0.76 0.47 0.26 0.03

Long period, small variance of demand, under-capacity
1.73 (0.36) 0.94 0.60 0.41 0.29 0.22 0.16 0.12 0.10

Long period, large variance of demand, over-capacity
10.11 (2.57) 6.55 4.70 3.62 2.75 1.92 1.24 0.70 0.16

Long period, large variance of demand, under-capacity
5.21 (1.20) 3.45 2.60 2.13 1.65 1.34 0.95 0.40 0.19

Short period, small variance of demand, over-capacity
7.11 (0.72) 4.59 3.48 2.78 2.33 1.95 1.69 1.47 1.28

Short period, small variance of demand, under-capacity
3.63 (0.89) 2.07 1.39 1.00 0.77 0.60 0.49 0.40 0.33

Short period, large variance of demand, over-capacity
15.13 (4.56) 10.47 (2.16) 7.98 (1.00) 6.47 5.50 4.66 4.02 3.50 3.04

Short period, large variance of demand, under-capacity
8.22 (2.22) 5.48 4.17 3.31 2.79 2.37 2.09 1.86 1.65

The gap between the decomposition approach and the optimal solution is in parentheses.

0

1

2

3

4

5

6

051015
K

G
ap

, %

Short period, small
variance
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Fig. 1. The gap between the average cost obtained with the decomposition method and the lower bound: under-capacity conditions.
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decomposition method and the lower bound), the actual gap, i.e., the gap between the average cost of the opti-
mal solution and that of the decomposition method is less than 5%.

7. Conclusion

This paper addresses a dynamic problem of inventory control under periodic demand update to minimize
expected inventory, overproduction and under-production costs with respect to the demand accumulated by
the end of the production horizon. Based on a decomposition approach, a feedback policy is derived as either
an implicit function of the difference between the current inventory and updated demand level or as an explicit
threshold-based control. The policy depends integrally on the number of update periods remaining until the
end of the production horizon and implies that only production at a maximum rate (full-load) or no produc-
tion at all is optimal in the system at each point of time. Moreover, between each consecutive time point of
update there can be at most one breaking point at which idling is followed by full-load production.

Our simulation results show that even under the worst-case production conditions of short update periods
with large variance of demands and over-capacity, the relative difference between the objective function value
of the optimal solution and that of the decomposition approach is less than 5%. Furthermore, the solution
obtained with the decomposition approach dramatically improves with the number of updates so that the rel-
ative gap reduces to 0.19% when there are more than nine long update periods.

Appendix

Proof of Lemma 2. Consider a solution for system (7) and (8), (10) and (11), which meets the demand,
X ðT ; nÞ ¼

PK
j¼1Dj:
uðt;nÞ¼
0; for tk�16 t< t�

1; for t�6 t6 T

�
; X ðT ;nÞ¼X ðtk�1;nÞþUðT � t�Þ¼

XK

j¼1

Dj and wðT Þ¼ c
U
þhðT � t�Þ:
By setting
t� ¼ T �
PK

j¼1Dj � X ðtk�1; nÞ
U

;

we observe that the considered solution is feasible and meets the optimality condition from (13) over the
remaining production horizon if tk�1 6 t* < T and w(T) = p. The former condition evidently holds, if
X ðtk�1; nÞ <

PK
j¼1Dj 6 X ðtk�1; nÞ þ UðT � tk�1Þ as stated in the lemma. The latter with respect to (11) and

wðT Þ ¼ c
U þ hðT � t�Þ results in an inequality,
wðT Þ ¼ c
U
þ hðT � t�Þ 6 p�:
Given p� P c
U þ hT , the inequality always holds. h

Proof of Lemma 3. Consider the following under-production solution for system (7) and (8), (10) and (11)
uðt; nÞ ¼ U for tk�1 6 t 6 T ; X ðT ; nÞ ¼ X ðtk�1; nÞ þ UðT � tk�1Þ; and

wðT Þ ¼ wðtk�1Þ þ hðT � tk�1Þ ¼ p�: ðA1Þ
By setting w(tk�1) = �h(T � tk�1) + p�, we observe that solution (A1) is feasible and meets the full-load con-
dition from (13) over the remaining production horizon if wðtk�1Þ > c

U, i.e., if �hðT � tk�1Þ þ p� > c
U (which

always holds) and
PK

j¼1Dj > X ðtk�1; nÞ þ UðT � tk�1Þ (under-production), as stated in the lemma. h

Proof of Lemma 4. Given control u(s,n), tk�1 6 s < tk, separating over- and under-production in (22), we
obtain for k < K
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J L ¼ ERðk�1;nÞ

Z T

0

½hX ðs;nÞþ cuðs;nÞ�dt
� �

�
Z 1

X ðtk�1;nÞþUðT�tk Þþ
R tk

tk�1
Uuðs;nÞds�

Pk�1

j¼1
Dj

p� X ðtk�1;nÞþUðT � tkÞþ
Z tk

tk�1

Uuðs;nÞds�w�
Xk�1

j¼1

Dj

 !

�/kðwÞdwþ
Z X ðtk�1;nÞþUðT�tk Þþ

R tk

tk�1
Uuðs;nÞds�

Pk�1

j¼1
Dj

X ðtk�1;nÞþUðT�tk Þ�
Pk�1

j¼1
Dj

pþ X ðtk�1;nÞþUðT � tkÞþ
Z tk

tk�1

Uuðs;nÞds�w�
Xk�1

j¼1

Dj

 !

�/kðwÞdwþ
Z X ðtk�1;nÞþUðT�tk Þ�

Pk�1

j¼1
Dj

X ðtk�1;nÞþ
R tk

tk�1
Uuðs;nÞds�

Pk�1

j¼1
Dj

pþ
Z tk

tk�1

Uuðs;nÞds


 �
/kðwÞdw

þ
Z X ðtk�1;nÞþ

R tk

tk�1
Uuðs;nÞds�

Pk�1

j¼1
Dj

�1
pþ X ðtk�1;nÞþ

Z tk

tk�1

Uuðs;nÞds�w�
Xk�1

j¼1

Dj

 !
/kðwÞdw: ðA2Þ
Note, that for k = K the last three terms of (A2) merge. Varying the functional (A2) we find
dJ L ¼ En02Rðk�1;nÞ

Z T

t
½hdX ðs; n0Þ þ cduðs; n0Þ�dt

� �

� p� 1� Uk X ðtk�1; nÞ þ UðT � tkÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 ! !Z tk

tk�1

Uduðs; nÞds

þ pþUk X ðtk�1; nÞ þ UðT � tkÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !Z tk

tk�1

Uduðs; nÞds

� pþ
Z tk

tk�1

Uuðs; nÞds/k X ðtk�1; nÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !Z tk

tk�1

Uduðs; nÞds:
Next, taking into account (23)–(25) and requiring dJ P 0, we obtain the following condition for k < K
dJ L ¼
Z T

t
heUdudt þ cedu� p�eUdu

þ ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !
eUdu

� pþ
Z tk

tk�1

Uuðs; nÞds/k X ðtk�1; nÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !
eUdu P 0; ðA3Þ
and for k = K,
dJ L ¼
Z T

t
heUdudtþ cedu� p�eUduþðpþ þ p�ÞUK�ðk�1Þ X ðtk�1;nÞþ

Z tk

tk�1

Uuðs;nÞds�
Xk�1

j¼1

Dj

 !
eUdu P 0:
Denote,
ukðt; nÞ ¼ �hðT � tÞ þ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ UðT � tkÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !

þ pþ
Z tk

tk�1

Uuðs; nÞds/k X ðtk�1; nÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !
for k < K; ðA4Þ
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and
ukðt; nÞ ¼ �hðT � tÞ þ p� � ðpþ þ p�ÞUk X ðtk�1; nÞ þ
Z tk

tk�1

Uuðs; nÞds�
Xk�1

j¼1

Dj

 !
for k ¼ K: ðA5Þ
Then using (A4) and (A5), we have
dJ L ¼ eUdu
c
U
� ukðt; nÞ

� 	
P 0: ðA6Þ
Let the control be maximal at t, tk�1 6 t < tk, u(t,n) = 1. This implies that only negative control variation is
possible at this period, du < 0. Thus, u(t,n) = 1 is optimal if condition (A6) holds under du < 0, that is, if
c
U � ukðt; nÞ 6 0. Similarly u(t,n) = 0, implies that only du > 0 is possible and, thus, from (A6) we find that
u(t,n) = 0, if c

U � ukðt; nÞP 0. Finally, both positive and negative variations are feasible when
0 < u(t,n) < 1, which results in c

U � ukðt; nÞ ¼ 0. However by differentiating this condition over an interval
of time, we find that _ukðt; nÞ ¼ 0 over the interval while differentiating Eq. (A4) results in _ukðt; nÞ ¼ h 6¼ 0, that
is c

U � ukðt; nÞ ¼ 0 cannot hold over an interval of time. h
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