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Abstract

We consider a two-echelon supply chain with a supplier and a retailer facing stochastic customer demands. The supplier
is a leader who determines a wholesale price. In response, the retailer orders products and sets a price which affects cus-
tomer demands. The goal of both players is to maximize their profits. We find the Stackelberg equilibrium and show that it
is unique, not only when the supply chain is in a steady-state but also when it is in a transient state induced by a supplier’s
promotion. There is a maximum length to the promotion, however, beyond which the equilibrium ceases to exist. More-
over, if customer sensitivity increases, then the wholesale equilibrium price decreases, product orders increase and product
prices drop. This effect, well-observed in real life, does not, however, necessarily imply that the promotion is always ben-
eficial. Conditions for the profitability of a limited-time promotion are shown and analyzed numerically. We discuss both
open-loop and feedback policies and derive the conditions necessary for them to remain optimal under stochastic demand
fluctuations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Surveys published in Progressive Grocer steadily report that manufacturing, wholesale, and chain store
executives claim that promotional programs are a top concern for their firms. Though large manufacturers
traditionally dominate trade deals, retailers armed with abundant information on profitability, product move-
ment, and customer demand for a class of goods are developing sophisticated purchase and storage policies to
take advantage of the trade promotions available from manufacturers. A retailer, for instance, may engage in
“forward buying”, that is, purchasing more goods during a promotional period than he expects to sell (Zer-
rillo and Iacobucci, 1995). On the other hand, increased use of promotions (e.g., weekend and holiday tariffs)
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enhances customer price sensitivity or leads to more price anticipation (Jedidi et al., 1999; Kopalle et al.,
1999). This paper analyzes such phenomena and provides formal rationales for complex purchase and inven-
tory policies under increased customer sensitivity.

We address the continuous-time behavior of a two-echelon supply chain facing limited-time promotion and
stochastic demand. There is a leader — a supplier or wholesaler with ample capacity — and a follower — the
retailer. When the supplier sets a wholesale price, the retailer commits to purchase a certain quantity. Both
desire to maximize their profits. The contract between these players is of the rolling-horizon type which implies
that purchase orders can be periodically updated within certain limitations (Anupindi and Bassok, 1998). If
demand as well as the chain parameters are steady, then there is a static Stackelberg solution to this two-player
game. However, if the demand changes, the Stackelberg strategy becomes dynamic. It is important to note that
the Stackelberg strategy is applied when there is power/information asymmetry in the supply chain. This strat-
egy is especially reasonable when one of the parties knows only his own cost function but the other party
knows both cost functions.

We study the effect of changes in customer price sensitivity on a supply chain operating under a limited-time
promotion. The promotion may be initiated by the leader, confirmed or prompted by the follower, or it may
be imposed by special business conditions. A typical initiative is an advertisement about a limited-time pro-
motion included in a routine advertising campaign. Such an ad, offering special prices, as opposed to a gradual
price discount, may substantially affect customer demand if the commodity under sale is a relatively new or
improved modification of a well-known product. An example of special business conditions is a national holi-
day, Christmas being among the most prominent. Empirical studies show that consumers are more price sen-
sitive during periods of high demand such as Christmas, Thanksgiving and Weekends (see, for example,
Chevalier et al., 2003; Bils, 1989; Warner and Barsky, 1995). In the UK, for example, Christmas sales of con-
sumer electronics may reach up to 40% of the annual sales. Such a shock in demand stresses the supply chain,
due to an instantaneous change in customer price sensitivity during holidays. This change, which can cause
customers to buy more than they usually would, indeed, more than they would normally buy even during
a regular promotion, increases the demand potential, a(¢) as well. To illustrate this phenomenon, one can view
demand d(¢) for a product as a function of the current product price p(#), the list price P and the customer price
sensitivity b(¢), d(t) = g(¢) + b(¢)(P — p(¢)), where g(¢) is the demand under anticipated list pricing, p() = P.
Then, by denoting the demand potential, a(¢) = g(¢) + b(¢)P, we observe that this function is equivalent to
the classical linear demand function, d(¢) = a(¢) — b(¢)p(¢). This is to say, if customer sensitivity 5(7) increases
during a limited-time promotion, the demand potential a(z) = g(¢) + b(¢)P may increase as well even if g(¢)
remains unchanged. This also implies that sales during a period of increased customer sensitivity and, as a
result, increased demand elasticity may become more efficient than those offered during regular times. For
example, if customer price sensitivity b(¢) increases during a limited-time period by K units per dollar and
p(t) < P, then the positive increment in demand, b(¢)(P — p(¢)), includes K additional product units for each
dollar discounted in price p(¢) compared to sales offered at other times.

The retailer’s response to temporary vendor trade promotions, including offering a retail pricing promotion
to customers, has stimulated considerable research (see, for example, Silver et al., 1998; reviews by Arcelus and
Srinivasan, 1995; Tersine and Barman, 1995). Kopalle et al. (1999) are among the first in marketing who sug-
gested a normative model which includes the effect of promotions on purchasing strategies in a discrete-time
dynamic Stackelberg game. However, they model the discounting rather than changes in regular prices and use
empirical price reaction functions for numerical optimization. The model accounts for competition between
brands but allows no retailer forward buying which, as they acknowledge, would be an important extension.

The retailer’s ability to collect detailed information about customer purchasing behavior and the ease of
changing prices due to new technologies (including Internet and IT) has engendered extensive research into
dynamic pricing in general and continuous-time pricing strategies in particular. Increasing attention has been
paid to dynamic pricing in the presence of inventory considerations (see, for example, a recent survey by
Elmaghraby and Keskinocak, 2003) and to coordinated pricing and production/procurement decisions (see
surveys by Chan et al., 2003; Yano and Gilbert, 2002; Cachon, 2003). However, despite this range of research
interests, relatively few studies are devoted to the continuous interaction between dynamic retail prices, inven-
tory-related costs and wholesale prices in supply chains, i.e., to a dynamic continuous-time game between sup-
ply chain members.
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Due to mathematical difficulties inherent in differential games, i.e., games involving decisions that have to
be made continuously, the supply chain management literature in this area has been primarily concerned
only with the application of deterministic differential models (Cachon and Netessine, 2004). Jorgenson
(1986) derives an open-loop Nash equilibrium under a channel setting and static deterministic demand with
demand potential a(z) and customer sensitivity b(¢) being constant. Eliashberg and Steinberg (1987) use the
open-loop Stackelberg solution concept in a game with a manufacturer and a distributor (both of unlimited
capacity) involving quadratic seasonal demand potential a(¢) and constant sensitivity b(z). Assuming that the
wholesale price the manufacturer charges the distributor is constant (no promotions) and that no backlogs
are allowed, they investigate the impact of the quadratic seasonal pattern upon the various policies of the
channel. They acknowledge that demand uncertainty jointly with stockout costs may change the results and
suggest supplementing the proposed procedure with a sensitivity analysis of the solution found. Desai (1992)
allows for demand potential to change with an additional decision variable. To address seasonal demands,
he later suggests a numerical analysis for a general case of the open-loop Stackelberg equilibrium under a
sine form of a(¢), constant customer sensitivity b(¢#) and unlimited manufacturer and retailer capacities
(Desai, 1996).

In contrast to the above papers, which study open-loop Stackelberg strategies for uncapacitated supply
chains characterized by deterministic gradual change in demand potential and constant customer price sensi-
tivity, we consider:

e instantaneous exogenous change in the customer price sensitivity, b(z), which shocks the demand potential,
a(t), as well; the wholesale price is endogenous and changes because of the change in price sensitivity;

e open-loop and feedback Stackelberg strategies for inventory levels observable during the planning horizon;

e a sensitivity analysis to determine the effect of stochastic demand fluctuations;

¢ a retailer characterized by a limited processing capacity.

After formulating the model in Section 2, we study the problem under steady-state conditions of no promo-
tions in Section 3. In this section we first derive an open-loop equilibrium for deterministic demand, then sug-
gest its feedback form and discuss the conditions for this feedback policy to remain optimal despite stochastic
changes in demand. Section 4 is devoted to the supply channel behavior under a limited-time promotion. We
show that the promotion transforms the channel from a steady-state to a transient state. In Section 4 we begin,
as in Section 3, with a deterministic open-loop solution to gain insight into the optimal behavior of the chan-
nel. Then an optimal feedback policy and the effect of random demand are formalized. We show that purchas-
ing more goods during a promotional period than the retailer expects to sell (forward buying) is optimal for
the retailer along with cutting retail prices. This requires simultaneous control of marketing and production
policies. The fine-tuning of the retailer strategy is to build some backlog demand around the starting point of
the promotion and some inventory around the ending point of the promotion. Furthermore, we find that if the
customer sensitivity, b(¢), increases during a promotion, the equilibrium wholesale price decreases, product
orders and demand increase and product prices drop. This effect, well-observed in real life (Chevalier et al.,
2003; Warner and Barsky, 1995), does not, however, necessarily imply that the promotion is beneficial for
the players. A necessary and sufficient condition for a limited-time promotion to be profitable is shown
and analyzed numerically. Section 5 summarizes our results.

2. The model

Consider a two-echelon supply chain with a supplier who distributes a single product-type to a retailer at a
wholesale price. The supplier chooses a wholesale price. In response, the retailer orders products and sets up a
product price that affects customer demand. The retailer only observes current demand; future demands are
unknown. The supplier and the retailer incur linear processing costs for ordering, transporting and handling
the product at a certain rate referred to as the processing rate. Since the supplier replenishes the products by
ordering from an outside source with ample supply and processing capacity, he can supply all the retailer’s
orders without incurring any stockout. On the other hand, the retailer’s processing rate is bounded and excess
demand is backlogged, which is why inventory/backlog costs could develop.
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2.1. Notations

X(1) retailer inventory level at time ¢, a state variable

u(t) order quantity processed by the retailer at time ¢ (processing rate), a decision variable

U retailer maximum processing rate

d(t) = a(t) — b(t)p(t) + e, customer demand rate for the retailer, where a(¢) is the demand potential at time ¢,
b(t) is the price effect on the customer demand (customer sensitivity) at ¢, e, = e;, for tf <t < 1,
k=0,1,2,..., =0 and e, is a random disturbance observable at 7 = 7,, and characterized by a
bounded distribution with Efe;] = 0

p(t) retail price at time ¢, a decision variable

w(t) unit wholesales price charged by the supplier, a decision variable

I, h~ product unit holding and backlog costs respectively incurred per time unit by the retailer

¢, ¢ product unit processing costs incurred by the retailer and supplier respectively

2.2. Statement of the problem

Let a typical rolling-horizon contract formalize the supplier and the retailer relationship. This implies an
infinite planning horizon and a period T that characterizes the contract. During 7, mutual supplier-retailer
commitments cannot be revised. Specifically, the supplier sets a constant wholesale price for a period, 7. In
response, the retailer commits to order fixed quantities with minor variations to cope with demand fluctua-
tions within the period. If the demand is steady, this type of contract results in a steady-state that the com-
mitments determine, i.e., constant wholesale price, as well as constant retailer order quantity, inventory
level and product price. This steady-state can be deliberately disrupted if a limited-time promotional sale is
initiated. With respect to this initiative, the supplier is expected to reduce the wholesale price from w; to w,
for the promotional period of time [¢, #] to boost sales,

w1 2 Wws. (1)

wy, <l and ¢ > tt,
w(t) =
Wa, t5<t<l‘f,

In response to the change, the retailer also drops prices and increases order quantities. As a result, the chain is
in a transient state for a period of time comprising the interval, [z, f7]. Furthermore, since the promotion dates
are either advertised or coincide with especially sensitive seasons (e.g. holidays), the price sensitivity of the cus-
tomers, b(?), during these dates increases:

by, t<t; and =t
bt)=4 ’ “ 7 by > by
b27 ts <t< tr,
As noted in the introduction, this increase in price sensitivity increases the demand potential a(¢) during the
promotion as well,

0 a, t<t; and =t
a(t) =
ay, t;<t<t.

That is, if b, > by, then from a; = g + b P and a, = g + b, P, we have a, > a,. Since the effect of the customer
sensitivity on demand potential is not necessarily linear, we relax the linearity and employ a more general
assumption with respect to the demand potential

aj a
by~ by’

ad(t) p(ty _ _p(1)

oplr) dlr) — Ay
©

Note, that this assumption is always met for any linear function a(¢) = g + b(¢)P, if b, > b;. Therefore we will

employ this special case in the paper as well whenever it is possible to gain more insights into the problem.

which ensures that the demand elasticity, — and thus the efficiency of price cuts, increases.
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The effect of an increase in customer sensitivity occurs only if the promotional time interval, [z, ¢], is much
shorter than the regular contract period 7, which is typically the case with limited-time promotions as well as
national holidays. Therefore we consider a period of time [0, 7] such that the supply chain, which was in
steady-state at the beginning of the period, will have enough time after the promotional interval to return
to this state by time 7.

2.2.1. Supplier’s problem

We assume that the supplier has ample capacity and that his dynamics are straightforward: produce (sup-
ply) exactly according to retailer orders u(¢) to maximize expected profits by choosing regular, wy, and promo-
tional, w,, wholesale prices:

Jo— E[ /O w(e)u(e) — cqu()]de| — max 2)
st ow(t) =0, (3)

where w(?) is determined by (1); the first term in the objective function (2) presents wholesale revenues over
time; and the other term presents supplier processing costs over time.

2.2.2. Retailer’s problem
The retailer also wants to maximize expected profits by selecting proper order quantities and product prices
{u(®),p(t),0 <t < T}

J. = [/ [p(?) —b()p(t) + e,) — cu(t) — w(t)u(t) — h(X(¢))]dt| — max 4)
s.t. = u(t) — (a(t) = b(t)p(t) + e); (5)
0< u( ) < U; (6)
d(t) = a(t) = b()p(t) + e, = 0; (7)
p(t) =0, (8)

where the first term in the objective function (4) presents revenues of the retailer from the sales
d(t) =a(t) — b(t)p(t) + e; the second term reflects retailer processing costs; and the third is the cost of pur-
chasing from the supplier at the wholesale price. The last term in (4) accounts for inventory costs where

hX () =h"X"(t) +h X (1),
X*(t) = max{X(¢),0} and X~ (¢) = max{—X(¢),0},

which are due to the bounded capacity (6) of the retailer. With respect to the inventory balance equation (5), if
the cumulative processing rate at time ¢ is greater than the cumulative demand at #, then the inventory holding
cost is incurred at 7,7 X (¢), otherwise the backlog cost A~ X~ (¢) is incurred.

In this work we use the Stackelberg approach to solve the supplier and retailer problems with the supplier
acting as the leader and the retailer acting as the follower. The next section determines the Stackelberg equi-
librium when the supply chain is in a steady-state.

3. The steady-state analysis

In this section we derive a Stackelberg equilibrium under steady, rolling-horizon, contract conditions char-
acterized by constant wholesale prices, retailer orders and inventory levels which are naturally kept at zero
level. This implies that we consider a subperiod during which no promotion initiative is expected.

3.1. Deterministic demand

We start off by considering the case when the demand is deterministic, i.e., ¢, = 0 for any ¢. Then to derive
deterministic equilibrium between the two players, the supplier and the retailer, we use the maximum-princi-
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ple-based optimality conditions (Simaan and Cruz, 1973). Specifically, given a wholesale price, w(z), we first
derive the optimal retailer’s response function by maximizing the Hamiltonian

H(t) = p(1)(a(t) = b(0)p(t)) — cou(t) — w(t)u(t) — (X (1)) + Y (2)(u(?) — a(t) + b(1)p(2)), 9)
with respect to the price p(¢) and processing rate u(z), where the co-state variable y(¢) is determined by the co-
state differential equation

ht, if X(¢) >0,

W) =< h, if X(t) < 0; (10)
hel-h,h"], if X(r)=0.

If the supply chain system is at the same steady-state at t =0 and ¢ = T, i.e., it is characterized by steady de-

mand potential a(0) = a(7T), customer sensitivity b(0) = b(T), wholesale price w(0) = w(T), and retailer’s
inventory state X(0) = X(7T), then the co-state variable must be also the same at these points of time:

¥(0) = y(T). (11)
Maximizing the Hamiltonian with respect to p(t), i.e., considering

H), = p(1)(a(r) = b(1)p(t)) + Y (1)b(1)p(t),
subject to (7) and (8) we readily find

a, if a(t) + b)Y (t) > 2a(t);
pl1) = § AU if 0 < a(t) + b)Y (1) < 2a(2); (12)
0, if a(t) +b(2)y(t) <O.

Similarly, by maximizing the u(¢)-dependent part of the Hamiltonian, H, = (—c¢; — w(¢) + y(¢))u(¢), subject to
(6), we find

U, if Y(t) > e +w(t);
u(t) =<0, if Y(t) < e+ w(t); (13)
a(t) = b(Op(r), if Y(1) = e + w(d).

Note, that the third condition in (13), which presents the case of an intermediate processing rate, is obtained
by differentiating the singular condition, ¥(¢) = ¢, + w(t), along an interval of time where it holds. Then by
taking into account (1) and (10), we conclude that this condition holds only if X(¢#)=0, i.e.,
u(t) =d(t) = a(t) — b(¢)p(¢). Furthermore, this singular condition is feasible if in addition to the constraints
(6)—(8), we have

(1) = a(t) — b(H)p(r) < U. (14)

To derive the steady-state retailer’s best response function, we assume steady sales. Specifically, we consider
a subperiod of time 7 C [0, 7] characterized by no promotion, so that the customer sensitivity 5(z) = b, whole-
sale price w(z) = w, and inventory X(7) = X remain constant, for a period of time, ¢ € 7, rather than identical
only at t =0 and ¢t = T as imposed by (11). As shown in the following lemma, this requirement implies that the
dynamic system exhibits a static behavior characterized by constant retailer’s pricing and processing rates as
well as zero inventory levels.

Lemma 1. If b(t) = b, a(t) =a, w(t) =w, X(t)= X for t €1, 1 C[0,T], and 0 < a — b(c; +w) < 2U, then
X =0, t €1, and the optimal retailer’s processing and pricing policies are:

—b(e; b(cr .
u(t) = w and p(t) = %ﬁ)—kw) for t € T respectively.

Note that this solution is equivalent to that of a monopolist facing a linear demand and linear production
costs.
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Lemma 1 determines the optimal retailer’s strategy in steady-state during a no-promotion period. To define
the corresponding supplier’s game in a steady-state over an interval of time, for example [0, 7], we substitute
the best retailer’s response from Lemma 1 for t =[0, 7] into the objective function (2):

E { /0 () — eau(t)]di] = w (w— )T, (15)

Note that the maximum of objective function (15) does not depend on the length of the considered interval 7.
Thus, we conclude with the following theorem for the supply chain, which is in a steady-state along an inter-
val, [0, T

Theorem 1. If b(t) =b, a(t) =a, w(t) =w, X(©)= X for t €[0,T], and 0 < a— b(c; +¢5) < 4U, then the
_a= b(cr—cs __a—- b(5r+CS) P
supplier’s wholesale pricing policy w*(t) = “—=5—*, and the retailer’s processing u*(t) = ~—=3-> and pricing

prt) = m policies constitute the unique Stackelberg equilibrium for t € [0, T).

According to Lemma 1 and Theorem 1, the retailer’s problem may have an optimal solution and the supply
chain may be in a steady-state if the demand is non-negative at this state and the maximum processing rate is
greater than the maximal demand

a
E)cr—i-cs and a < U,

as assumed henceforth to simplify the presentation.
3.2. The effect of random demand disturbance

The sensitivity of the optimal solution determined in Theorem 1 to a bounded change in demand is intu-
itively clear. Indeed, according to the theorem, the best retailer’s response is to maintain state and co-state
variables at levels of X(¢) =0 and ¥/(¢) = ¢, + w, respectively. Consequently, if random demand fluctuations
are bounded so that the order quantities u(z) and pricing policies p(¢) can be adjusted to keep X(¢) =0, then
the optimal policies found in Lemma 1 and Theorem 1 would still remain optimal. More precisely, the optimal
open-loop equilibrium of Theorem 1 would transform in a feedback policy. To prove this fact formally, how-
ever, we need to redefine the deterministic optimality conditions (9)—(13) with respect to the random demand
disturbances e,. This is accomplished by considering a small variation of the optimal processing rate and price
and declaring that no such variation can improve the objective function, i.e., 8J, < 0.

Let e/(¢) be a realization of the demand disturbance e,. Denote the set of all possible realizations over the
entire production horizon {¢} as R. Consequently, denote the set of all realizations &', & € R, which coincide
with a realization, &, from the beginning of the production horizon through time ¢, as R(t, ). That is,

R(t,&) ={&|E € R, and (&) = (&), for 0 <s <t}

Given a realization of demand disturbance, ¢,(¢), and the corresponding inventory level X(z, ) at time ¢, the
stochastic conditions (that identify an optimal relationship between the processing rate u(z, £), pricing p(t, &)
and co-state variable y(t,¢)) for this realization are summarized as follows (see Appendix A for the
derivation):

if a(t) + e/(&) + b(t)Erpo (1, O)] > 2a(1);

i) = el PPl i g < o)+ e6) + 50 B 905 ) < 2at0)
0, if a(t) +e/(&) + b(t)Erue) Y (2, )] <
U, if Erpe [ (8] > e +w(?);

u(t,§) =40, if Erpe[(t, &) < ¢ +w(t); (17)
a(t) + e(&) = b()p(t, ), if Eree[Y(,<) (1)

| = e+ w(?).
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Comparing the deterministic pricing optimality conditions (12) with the stochastic conditions (16), one can
readily observe that the disturbance e/¢) is naturally added to the demand potential in the stochastic case.
The only actual difference is that the co-state variable in (12) is replaced with its expectation in (16). Similarly,
one can verify the same difference between the optimal deterministic (13) and stochastic order processing con-
ditions (17). It is significant that the last condition of (17) requires that X(¢,&) = 0 as was the case with (13).
Moreover, it is this condition that induces a steady-state. Therefore, if there is a feasible policy which makes it
possible to retain zero inventory level for the stochastic formulation, then the same type of equilibrium could
still be achieved. Consequently, this policy can be viewed as a feedback policy for real-time orders and the best
retailer’s response will be very similar to that of Lemma 1 as shown in Lemma 2.

Lemma 2. If b(t) =b, a(t)=a, w(t) =w, X(¢t,&) =X(&) for ter, 1C[0,T], £E€R, and the random
disturbances e/(&) are such that 0 < a+e,(&) — b(cr +w) < 2U, then X(t,&) =0, for t € 1, and the optimal
retailer’s processing and pricing policies are:
a+e(é) —ble+w a+e (&) +ble,+w
g = AL HGEN) gt el NG T
Lemma 2 provides a condition when feedback inventory level can be kept at zero and thus demand distur-
bances do not accumulate over time. Using Lemma 2, we are now able to verify that though the retailer’s pro-
cessing and pricing rates change, the optimal supplier’s strategy under bounded disturbances will remain the
same as shown in Theorem 2.

for t € T respectively.

Theorem 2. If b(t) = b,a(t) = a,w(t) =w, X(¢) = X(&) for t € [0,T], ¢ € R and random disturbances e,(&) are
such that —“_b<++“ <e(é) €2U - a_b(++‘5 then the supplier’s wholesale pricing policy w*(t) = %, and

a+2e,(&)—b(cr+cy _ 3a+2e,(&)+b(crtes
4

the retailer’s processing u*(t,&) = ) and pricing Pt &) = f policies constitute the

unique Stackelberg equilibrium for t € [0, T).

According to Theorem 2, if random demand disturbances e,(¢) are bounded by

SAEMEEE) g <oy ATMEEE)

2
the optimal supplier’s wholesale price w*(¢) = % is proportional to the demand potential and the sup-

plier’s processing cost. This wholesale price, however, decreases when the retailer’s processing cost and the
customer sensitivity increase. Naturally, the greater the maximum processing rate, U, the wider the bounds
determined by conditions (18), which implies that the steady-state equilibrium of the supply chain can be re-
tained even with sizable disturbances in demand.

(18)

4. The transient-state analysis

In this section we assume first that since the promotion time is much shorter than the committed contract
period T, the supplier chooses the wholesale price as determined in Theorems 1 and 2 to maintain a steady-
state; a new wholesale price can only be selected at a predetermined date for a limited promotional period. In
response, the retailer will change his policy accordingly. This changeover induces a transient state in the supply
chain in which both the supplier and retailer attempt to use the increased customer sensitivity during the lim-
ited promotional period to raise sales.

Secondly, since 7 is longer than the promotion duration, we assume that the supply chain which is in a
steady-state (characterized by demand potential @; and sensitivity b;) at time ¢ =0 will return to this state
by time ¢t = T after the promotion period, which starts at 7,> 0 and ends at time #; < 7. This implies that
the optimality conditions (10)—(13), 16,17 derived in the previous section remain the same, but that w(¢) is

no longer constant and is defined by Eq. (1), w; = w*(¢) = afb(zc;“), where a = a; and b = b, .

4.1. Deterministic demand

We start off again by considering the case when demand is deterministic, i.e., ¢,=0 for any ¢. To derive the
retailer’s best response function, we distinguish between two types of transient states: brief and maximal
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changeover. The difference between the two transient states is due to a temporal steady-state the supply chain
may reach during the promotion. The presence of this temporal steady-state implies that the retailer has
enough time to optimally reduce prices to a minimum level corresponding to the promotional wholesale price
w,. This phenomenon can be viewed as the maximum effect that a promotional initiative can cause, which is
why in this paper we focus on this type of transient state, as discussed in the following lemma.

Lemma 3. Let a(t) —b(t)(co+w(t) > 0, d* =a=hlenl o —eblobol >y, Jf 4 <4, 6> 4,
ty < tf, ty>tf, th <tz satisfy the following equations:

Uty — 1) = %(al(ts —t)+a(tr—t)) —%(bl(ts — 1)+ by(ta — t5))(cr +wi + A1)

b (B =)+ BB =), B (1) =i = (19)
Ulty — ;) = %(a,(m —t) +ar(ty — t3)) — %(bl(m —tr) + byt — 13)) (e +wa — BT t3)

- %h*(bl(ti — )+ b (2 —8)), B (ts—13) = w —wy, (20)

then X()=0for0 <t <t), b <t <t3, 4 <t ST X(t) <O0forty <t<trX()>0fort; <t<ty; the optimal
retailer’s processing policy is
ult)y=d* for0<t<t, and 1
u(t)=U fort;<t<t, and &

<t<T, u(t)=d™ forty <t<t,
<t<ty, u(t) =0 forty <t<t, and f <1<ty
and the optimal retailer’s pricing policy is

t _a(t)+b(t)(cr+w1 —hi(l—ll)) :a2—|—b2(cr+w2)

= Hh<t<ty, t
p() 2b(l) fOV 1 <bh p() 2b2
by (e
for ty <t < ts, p(t)=w for0<t<t, ty <t<T,
1
~a(t) +b(1)(ec +wr + AT (1 —13))

p(t) = 26(0) for ty <t < ty.

The optimal solution derived in Lemma 3 is illustrated in Fig. 1. According to this solution, it is beneficial
for the retailer to change pricing and processing policies in response to a reduced wholesale price and increased
customer price sensitivity during the promotion. The change is characterized by instantaneous jumps upward
in quantities ordered and downward in retailer prices at the point the promotion starts and vice versa at the
point the promotion ends. Inventory surplus by the end of the promotion indicates that the retailer orders
more goods during the promotional period than it is able to sell (forward buying). Moreover, the retailer starts
to lower prices even before the promotion starts. This strategy allows building greater demands by the begin-
ning of the promotion period and taking advantage of the reduced wholesale price during the promotion. This
is accomplished gradually so that a trade-off between the inventory backlog (surplus) cost and the wholesale
price is sustained over time. Fig. 1 shows that any reduction in wholesale price results first in backlogs and
then surplus inventories. This is in contrast to a steady-state with no inventories being held. In addition,
the total retailer’s order quantity increases with the decrease of the wholesale price as formulated in the fol-
lowing corollary.

Corollary 1. If a(t) — b(t)(c; +w(¢t)) = 0, the lower the promotional wholesale price, w, the greater the total
order f:‘ u(f)de = f;“ d(t)dt and the lower the overall product pricing ft’]“ p(r)ds.

Note that the retailer’s problem is convex, but not strictly so, since it involves piece-wise linear terms in
objective function (4). This implies that in contrast to Lemmas 1 and 2, where state and co-state variables were
uniquely fixed at a constant level, there could be multiple solutions in the transient system that provide the
same optimal value for the objective function. The following lemma resolves this ambiguity.
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Fig. 1. Optimal retailer policies under promotion (the case of symmetric costs, #* = 4").

Lemma 4. The optimal retailer’s response determined by Lemma 3 is unique.

Lemmas 3 and 4 identify a unique retailer’s strategy in the presence of a transient state during a promotion
period. To define the corresponding supplier’s strategy over interval [0, 7], we substitute the best retailer’s
response from Lemma 3 into objective function (2):

E[ /0 T[W(t)u(t) —csu(t)]dt} = /0 " w1 — e de + / " s — U dt + / " s — )™ de

t
f T ’
+/ (wz—cs)Udt—I—/ (wy — ¢5)d" dt.
5] 1y

That is

E {/OT[w(t)u(t) - csu(t)]dt} =w —c)d (T—ts+t)+ (wma—c)U(th —ts + 1t — 13)
+ (wy — c5)d™ (6 — ta). (21)

Applying the first order optimality conditions to this function with respect to w, and denoting the result by
F(w,), we obtain

F(Wz) = d*(WI — CS)[ll — t4]:v2 + U([f — ts) + U[(Wz — Cs)(tz — 1‘3)];72 + [d**(WQ — CS>(I3 — t2)];/z =0. (22)
To show the uniqueness of the equilibrium for a transient state, we need the following property.

Lemma 5. Let Ry = —A} — A5 + (w1 — wa) (= +75), a(t) — b(t)(cr +w(t)) = 0, by > by,
Uty =) —d" (i =)l 1], = (U =) (wi =) (I =), = [E+74] ) = (@5 m =) — )
R2 = U )

and d = w, where A| and A5 are determined by the solutions of (19) and (20) (see Appendix A). If

Ry <ty — ty < Ry, then Eq. (22) has only one root o, such that c¢; < oo < wy = %ﬁ’_q‘)
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The optimal supplier’s wholesale price versus retailer’s price and order quantity under a limited promotion
period is presented in the following theorem.

Theorem 3. If a; — bi(c; +¢5) = 0, ay —ba(er + o) = 0, and Ry < tr — ts < Ry, then the supplier’s wholesale
pricing policy w*(t) =w; = %fl‘*c) Jor 0<t<ts, ty <t < T and w*(t) =wy, = a for t; < t < ty, and the
retailer’s processing u*(t) and pricing p*(t) policies, determined by Lemma 3, constitute the unique Stackelberg
equilibrium for t € [0, T).

The existence of equilibrium wholesale price w*(¢) = w, = « stated in Theorem 3 readily results in the fol-
lowing corollary.

Corollary 2. Let ay —bi(c; +c¢5) 2 0, ay — ba(er +a) = 0, and Ry < ty — ts < Ry, if the customer sensitivity
increases during the promotion period, by > by, then the wholesale price decreases wy, < wy.

From Corollaries 1 and 2, it immediately follows that during higher demand the retail price falls (Corollary
1) when customer sensitivity increases (Corollary 2). Moreover, the retailer starts to lower prices even before
the promotion starts (Lemma 3). This phenomenon has been widely observed in empirical studies of retail
prices during and close to holidays (see, for example, Chevalier et al., 2003; Bils, 1989; Warner and Barsky,
1995). Furthermore, for the linear relationship between customer sensitivity and demand potential,
a(t) = g(¢) + b(¢)P, discussed in the introduction, we can estimate the minimum total order quantity increase
in a transient state. This is shown in the following lemma.

Lemma 6. If ay =g+ b\P, ay =g+ byP and P > %(;’7; + ¢ + <), then the total order quantity in the transient
state, [ t,t4], exceeds the total order quantity in the steady-state of the same duration, [t,t4], by more than
% (P — %(Z—:-i- cr + CS)(bz - bl)) (tf — ts).

Note, that P > %(Z—: + ¢ + ¢s) implies P > % + ¢ + ¢, i.e., this condition of Lemma 6 may hold even if the
price, p*(¢), at the steady-state (see Theorem 1) is above the list price P. An immediate corollary is in order.

Corollary 3. If aj =g+ b1P, ap =g+ b,P and P > %(Z—: + ¢r + ¢s), then the stronger the increase in customer
sensitivity,b,, the greater the increase of the total order quantity during the transient state compared to the steady-
state.

4.2. The effect of random demand disturbance

The sensitivity of the optimal solution determined in Theorem 3 to a bounded change in demand is different
from that for a steady-state. This is due to the fact that instead of constant inventories maintained at a steady-
state, the retailer’s best response during a promotion is characterized by inventory levels changing over time as
shown in the following lemma.

Lemma 7. If the random disturbances e/ (&) are such that a(t) + e/ (&) —b(t)(c; +w(t)) = 0, t€0,T],
a(t) +e(&) —b(t)(cr +w(t)) KS2U for 0 <t < t1, h <t <t3, 4 <t<T,EER;

- /r(a(r) +e (&) —b(r)p(r,E))dr+U(t—1,) <0, t <t<ty

3|

Ult—1t;) — /t(a(r) +e (&) —b()p(r,8)dt = 0, £ <1<ty

3
t 1y
/ e, (&)dt =0, / e(8)dt =0, then X(t,&) =0 for0<t<t, b <t<h, 4 <t<T;
1 3

X(t,E) <0 fortyy<t<ty X(t,E >0 fort; <t<ty

the optimal retailer’s rocessin olic s u(t = atel@biletw) g L<t<ty an ty <t <
h pl" / V iler’ p . g p I ¥ . 7 aj+e (&) 2b1(c +wi) 0< d <t <

u = Qrelel=nlet W) for t, <t < t3, u(t = orty<t<tbandt; <t<ty u =0 fort; <t <t
T, t, ate($) 2b2(c +ws) < ) , U < d <t , t, 0 <

and t; <t < ty; and the optimal retailer’s pricing policy is p(t,&) = “(’”e’(i)*b(’)zﬁ'gw‘_”7”_”)) for ty <t<t,
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p(t’f)—w fOV b <t <t (té)—w fOV 0<t<t, <t <T,

2b,
p(t, f) 1)+e( CQ)JFb 2bc(r)+wz+h 1—13)) fO}’ f < t <ty

According to Lemma 7, random fluctuations in customer demands will not affect the optimal retailer’s pol-
icy as long as there is no change in the cumulative demand at the breaking points, #, and #,. As a result, the
processing rate remains the same though the prices change and the inventory level may fluctuate substantially
between time points #; and ¢, as well as #; and #4. Note, though the cumulative conditions imposed on ¢,(&) in
Lemma 7 are restricting, according to the celebrated Ergodic Theorem, if the process of disturbance e; = ¢,
for * <t < 1, k=0,1,2,...,1is Ergodic, then the smaller the time intervals [t" t"“] (compared to the inter-
vals [t,1,] and [t3,14]), the closer the time average to the space average. That is, — - 71 J tf e (&)dt — Ele;] =0
and, thus, the conditions ftl e(&)dt = j;s e,(&)dt = 0 are likely to hold.

Consequently, the optimal solution derived in Lemma 7 is based on the co-state behavior identical to that
of Lemma 3 (see the proof of Lemma 3 in Appendix A). Therefore, using the same arguments as in Lemma 4,
we can conclude that this solution is also unique. Furthermore, similar to the retailer’s best response when
disturbances occur in a steady-state, one can view the optimal solution during the promotion conditions of
Lemma 7 as a feedback policy. Indeed, the processing and pricing policies are such that inventory levels
are kept at zero when the supply chain is in a new steady-state during the promotion, i.e., for £, < ¢ < ts.
On the other hand, the remaining promotion time is characterized by an integral feedback, n°(X (¢), ), where
the upper index, 0, stands for the critical number X* = 0 (threshold) which the feedback depends on. This is
summarized below:

0, ifX(#¢E) <0and# <1<t
u(t.2) = HS(X(I, 9.0 U, if X(t,&) <0 and ¢ > ¢;
U, if X(¢,¢) 2 0and ;3 <t <t
0, if X&) >0andr¢ > t;
| a(t) +e(&) + b(t)z(;fEJ w=h=0) v <o,
p(t, &) = m,(X(1,),1) = alt) + () + b(0)(er + wa + I (t — 1) X050
2b(t) ’ '

An important insight of these feedback policies is that the traditional marketing assumption on time invari-
ance of optimal feedback does not necessarily hold if the supply chain has a transient state.

Relying on Lemma 7, we determine the bounds for stochastic disturbances so that the optimal supplier’s
strategy remains the same as in Theorem 3.

Theorem 4. If the random disturbances e &) are such that ay+e/(t, &) —bi(cr+¢) = 0,
ay +e(t,&) —by(c; +a) =0, te€[0,T], aj+2e(t&) — bl(cr—|—cs) 4U, for 0<t<t; and t4 <t<T,

a + e, (t, &) — bg(cr+oc)<2U for t2§t<t3, EER; fft ) + e (&)— >b( ) ( f))dt+U(t7ts)<0,
h<t<t, Ult—t) ft 7) + e (&) — b(t)p(r,&))dt = 0,13 < t < ta, ft e(¢ e/(&)dt =0, and
Ry <tr —t; <Ry, then the suppller s wholesale pricing policy w*(t) =w; = % for 0<t<t,

tr <t < T and w'(t) = wy = o for ts < t < tr, and the retailer’s processing u*(t,&) and pricing p*(t, &) policies
determined by Lemma 6 are the unique Stackelberg equilibrium for t € [0, T).

As shown in Theorems 3 and 4, as well as Corollaries 1-3, the optimal Stackelberg solution implies that if
customer sensitivity increases during a promotional period, then both the retailer and the supplier increase
their profits compared to a solution which disregards the change in customer sensitivity. This however, does
not necessarily mean that profits during the promotion will exceed those gained during regular operation at a
steady-state. This is to say, that on special occasions like Christmas, customer sensitivity may increase without
any promotional initiative and the chain will have no other option than to respond. On the other hand, if a
promotional initiative is assessed in advance as not beneficial in regard to regular profits then it can be aban-
doned. The necessary and sufficient condition with respect to the profitability of a limited-time,
R; < t; — t; < R,, promotion initiated by the leader is straightforwardly obtained from Eq. (21):
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Wholesale prices w5 in transient state and profit gaps between transient and steady-state (10°$) of the supplier 6, (b2) and retailer 6,(b,)

h=1,h =2, ¢ =30, c,=60

ht =1, h =10, ¢, = 30, ¢; = 60

H=1,h =2 ¢=060,c=30

by =12-24
01(b2)(02(b2)) - - -
W No equilibrium No equilibrium No equilibrium
bz = 28
01(b)(02(b,)) 4.2342 (1.8058) 4.2540 (1.8669) 4.2342 (1.8058)
W 125.6560 125.2240 95.6560
bz =32
01(b2)(02(b,)) 0.6568 (0.5914) 0.7292 (0.5289) 0.6568 (0.5914)
W} 114.0560 113.2240 84.0560
b2 =36
01(b2)(02(b2)) —2.0835 (0.0371) —1.9369 (—0.3428) —2.0835 (0.0371)
W} 104.5200 103.3680 74.5200
b2 =40
01(b2)(02(b2)) —4.1982 (—0.0935) —3.9647 (-1.1398) —4.1982 (—0.0935)
W} 96.5756 95.1680 66.5756
b2 =44
01(b2)(02(b2)) —5.8350 (—0.0398) —5.5084 (-2.1196) —5.8350 (-0.0398)
W} 89.8640 88.2800 58.8640
b2 = 48
01(b2)(02(b2)) —7.0995 (0.1026) —6.6780 (—3.0038) —7.0995 (0.1026)
W} 84.1444 82.4160 54.1444
b2 = 52

01(b2)(02(b2))

«
w3

—8.0689 (0.3553)
79.2080

—7.5535 (—3.6440)
77.3840

—8.0689 (0.3553)
49.2080

If 91<b2) = (W2 — CS>U(ZQ —ts+ tr — f3) + (Wz - Cs)d**(ﬁ - 12) — (Wl — Cs)d*(f4 — tl) > 0, then the supplier
(the leader) will gain from the promotion an extra profit compared to the regular (steady-state) profits for
the same period of time. Similarly, from (4) one can define a gap function, 0,(b,), so that the retailer would
have an extra profit if 0,(b, > 0). Since these conditions involve extremely large expressions of the switching
time points, we illustrate the evolution of profit gaps 6,(b,) and 0,(b,) quantitatively for different customer
sensitivities and fixed promotion times. The interpretation is immediate — when both gaps are positive, the pro-
motion is beneficial for both the leader and the follower. Calculations for U = 10,000, a; = 2500, a, = 6000
product units per time unit, b; = 10 product units per dollar and time unit, z, = 100, ¢y = 300 and 7' = 1000
time units are presented in Table 1.

From Table 1, we see that there is a bounded interval to the customer sensitivity values b, for which an
equilibrium exists. The existence of the equilibrium starts from b, > 24 which ensures our general assumption
on an increase in demand elasticity, Z—: > Z—i, and terminates at b, >52 when the condition,
ay — by(¢; +wy) = 0, of Theorem 3 no longer holds. More importantly, the range of values is such that the
promotion gains extra profits for both the supplier and retailer (i.e., gaps 0,(b,) and 0,(b,) are both positive)
from b, =28 to b, = 32. This result is due to a non-linear relationship between the demand potential, a,,
which remains the same and sensitivity, b,, which increases. The profitability range could be extended if a lin-
ear relationship, a(f) = g + b(¢)P (see Lemma 6), were used in the example. Under such conditions, a, would
always increase with b,.

5. Conclusion

Though a steady-state Stackelberg equilibrium of the supply chain exists, this is not always the case when
the chain is in a promotion state. The main reason for this is an instantaneous increase in customer sensitivity



286 K. Kogan, A. Herbon | European Journal of Operational Research 188 (2008) 273-292

during a predetermined period of time. The retailer’s equilibrium strategy is to purchase more goods during
the promotional period than the retailer expects to sell. Specifically, it builds some backlog demand around the
starting point of the promotion and some inventory around the ending point of the promotion, and keeps zero
inventory elsewhere. We show that both wholesale and product prices must be decreased in response to the
change in customer sensitivity and that there is an upper time bound for such a promotion to attain an equi-
librium. Moreover, this equilibrium is not necessarily beneficial in comparison to regular, steady-state sales. A
necessary and sufficient condition is suggested which can be used in two alternative ways. One is to find the
promotion time limit so that it remains profitable for a given customer sensitivity. This, of course, is possible
when the chain members initiate the promotion and the promotion time is controllable. The other way is to
find the range of customer sensitivity levels such that the promotion is beneficial during a given promotion
time. This case corresponds to the sales during special dates which are not controllable and is illustrated with
an example.

Finally, we considered classic contract conditions characterized by the supplier’s commitment to a constant
wholesale price if the retailer purchases a certain amount of products for a period of time. However, if the
supplier is not fully committed, then the Stackelberg strategy is not necessary time-consistent. Indeed, we feel
that further exploration into the development of coordinating contracts and incentives to ensure that the equi-
librium wholesale price remains time-consistent during a promotion is an important direction for future
research. This naturally complements, of course, research into the challenges posed by the competitive
multi-supplier/retailer setting.

Acknowledgements

The authors are very grateful to Prof. Yigal Gerchak for his many useful comments and suggestions.

Appendix A
A.1. Stochastic optimality conditions for the retailer’s problem
We derive optimal processing rate u(¢,&) and pricing p(¢, &) by applying a needle, ¢, control variations

du(t, &) and dp(t, &) for the realization ¢ at point ¢:

du(z, &) =

ou, ift<t<t+e, op, ift<t<t+e
op(t, &) = (A.1)

0, otherwise, 0, otherwise.

Then if two realizations coincide up to point ¢, the processing and pricing rates must coincide until this point,
i.e., the non-anticipativity constraint is

u(t, &) = u(r, &), pr, &) =pr,&) forall & e R(t,E), 0<T< ¢ (A.2)
This, by taking into account (A.1), results in
du(t, &) = du(t, &), 8p(r,&) =8p(r,&) forall & eR(t,E), 0<t<T. (A.3)

Consequently, the influence of variation (A.1)—(A.3) on the inventory level X(z,&) in the first order of ¢ is

for all ¢ € R(1, ). (A.4)

edu + b(t)edp, if ©>¢
38X (z,&) =

0, otherwise
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With respect to (A.1)—(A.4), variation of the objective function (4) results in

0J = (a(t) — 2b(t)p(t, &) + e,(&))edp — credu — w(t)edu

" dh(X(,8))
~ewo| | axe

Introducing a co-state variable as defined by (10), we obtain
0J, = (a(t) — 2bp(t, &) + e,(&))edp — credu — w(t)edu + Epe [ (1, &)](edu + bedp). (A.6)

Requiring that no variation of the objective function can improve it, 8J; < 0, and considering only price-
dependent terms of variation (A.6)

SJ:(p) = (a(t) = 2b(1)p(t, &) + €,(&))edp + Ep.e (Y (2, €)]b(1)edp < O

(t,
we find that when the price is maximal, p(z, &) = a(z)/b(¢), a possible variation dp can only be negative, there-
fore, (a(t) = 2b()p(t, €) + e(S)) + Erpo (2, €)b(2) = 0. That is, a(r) + e,(S) + Erpo Y (¢, €)]b(1) > 2a(7). On
the other hand, when the price is minimal, p(z, £) = 0, the only possible variation is positive and, therefore,
a(t) + e (&) + Eruo (1, )]b(t) < 0. An intermediate pricing regime is derived when 0 < a(t)+e/(&)+
Erup(t,&)]b(t) < 2a(t) from (a(t) — 2b(t)p(t, &) + e(&)) + Erup (¥ (z, £)]b(f) = 0. These stochastic optimality
conditions are summarized in (16).
Similarly, considering only processing-rate-dependent terms of variation (A.6)

0J = —credu — w(t)edu + Epqe (Y (2, E)]edu < 0

we find that when u(z,&) = U, only negative variation is feasible, du <0, ie., 8J, <0, if Epie[Y(t,8)] >
¢ +w(t). Similarly, if u(t,&) =0, du>0 and Egoy(t,&)] < e +w(r). Finally, if 0<u(t,&) < U,
Erue[W(t,&)] = e + w(t). To eliminate the ambiguity of the last condition, we differentiate it over an interval
of time. Then by taking into account (1) and (10), we find that X(z, £) = 0 over this interval, which, with respect
to (5), results in u(t, &) = a(t) + e,(&) — b(t)p(t, &), iff Erpe)[W (2, &)] = ¢ + w(t), as summarized in (17).

(edu + b(t)edp)dr|. (A.5)

A.2. Solution of Eq. (19)
fij=t—A] and =1 +1,

where
1
W, — Wy U+iay—Lay —1bifo +1bof + [Di]
pr— = T 5 A*_
N Pk fr=a+wm 1 2h b — 1]
) 1, 1, 1 1 1 1 1
=U —|—U611 —Uaz—Ub1f2+Ub2f2+Zal +Za2—§a1a2—§a|b1fz +§a2b1ﬁ_§a2b2f2+§alb2f2

1 1 1 1 1 1 1
+—b§ 22——b1b2f§ +Zb§ 2 — <§hb1a2f1 —§lfblbzf,f2 +Z}f2blbzf12 — h™ b Uf; —zh’bzazfl

+5 h Bififs — ~h b} 12+h‘b2Ufl>.

A.3. Solution of Eq. (20)
w1 — Wy

th=tt+4;, and ,=0—-11, fi= .

where

Ol—

U+iay —Lay —3bifo +3bofs —ib1h" fi + 102 fih" + (D))
Th¥lbs — b] ’

f2:cr+wl7 A;
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1 1 1 1 1 1 1
D =U?*+Ua; — Ua, +Za% +Za§ M- beZU"’beZU_Ealble +§alb2f2 +§azbl4 2 —Eazbzfz —bih" LU
1 1 1 1 1 1 1 1
+oah" fiU+ 00 f3 + b5 f3 —Saibifih —Sabafih +5aibafih +5ab il + 3B fifah =S bibaf P
1 1 1 1
—5bibaf3 F SO Sk = bibafu ot B R

1 1 1 1 1 1
— (—blhwfl +§b1h+alf1 —§b1h+b2f1f2 —Zb1h+2b2f12+b2h+ Uf —§b2h+a2f1 +§b§h+f1f2 +Zb§h+z 3).

Proof of Lemma 1. Consider the following solution for the state, co-state and decision variables:

a+b(e+w)
N 2b

a—b(c;, +w)

5 for t € 1.

Xt)=0, ¥({t)=c+w, pt) and u(t) =
It is easy to observe that this solution satisfies the optimality conditions (11)—(13). Furthermore, this solution
is always feasible if conditions (7) and (14) hold which is ensured by 0 < a — b(c; + w) < 2U stated in the lem-
ma. Finally, the retailer’s objective function (4) involves only concave and piece-wise linear terms, which im-

plies that the maximum-principle-based optimality conditions are not only necessary, but also sufficient. [J

Proof of Theorem 1. Function (15) is concave in w, therefore the first order optimality condition applied to it
results in a unique optimal solution w*(¢) = % which is feasible if § > ¢; + ¢, as stated in the theorem.
Furthermore, p*(7) is feasible (meets (7)) due to the same condition, ¢ > ¢ + ¢,. Finally, u*(7) is feasible if the
condition, 0 < @ — b(c; +w) < 2U, stated in lemma 1 holds. Substitution of w*(z) into this condition as well as

into equations for p(z) and u(z) determined in Lemma 1 completes the proof. [

Proof of Lemma 2. Since 0 < a + ¢,(&) — b(c; + w) < 2U, it is still feasible to maintain zero inventory level, so
that 0 < u(t, &) = @M < and plt, ¢) = Lol gatisfies (7). Then with respect to (10), the co-
state variable can remain constant at ¢, + w and, therefore, Eg. ¢ [y/(t, )] = ¢ + w. Thus, similar to Lemma
1, the solution stated in Lemma 2 meets the stochastic optimality conditions (16) and (17). O

Proof of Theorem 2. The proof is straightforward. Indeed, calculating the expectation in the objective function
(2) and taking into account that E[e,] = 0 we obtain (15) again:

EUOT[WQ)“(;) —csu(t)]dt} — Eq UOT ateld) ;b(c‘“”) (w—c;)dt :w(w—cs)ﬂ

which is a concave function in w. Therefore, regardless of the length 7, the first order optimality condition
leads to the same optimal solution w*(¢) as in Theorem 1, which is always feasible (and greater than ¢) as
¢ > ¢ + ¢. Finally, one can readily verify that p*(¢,{) and u*(¢, &) are feasible if 0 < u*(z,&) < U, ie.,

SAEHETE) g < qu - ATMEES)

as stated in both Lemma 2 and Theorem 2. O

Proof of Lemma 3. First note, that as mentioned in Lemma 1, the retailer’s problem is concave, which implies
that the necessary optimality conditions are sufficient.

Consider a solution which is characterized by four breaking points, ¢, 5, 3 and 4 so that the retailer is in a
steady-state between time points t =0 and ¢ = ¢}, between ¢t = ¢, and ¢ = t;, and between t =4 and t = T, as
described below:

X(t)=0 for

0<t<ty, Lt
u(t)=d* for0

tyand 14 <t < T; (A7)

t<T, u(t)=d" fort <t<t, (A.8)

NN
V/AN/AN

t<t and t
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u(t)=U forty<t<thand <t <t, u(t)=0 fory <t<tsand t <1<ty (A.9)
Yy(t)=ci+w for0<t<tandyyu <t<T, Y({t)=c+w fortr<t<n (A.10)
Y=c+w —h (t—1) fort <t<ty, V() =co+w +h (t—1t;) forty <t <ty (A.11)

It is easy to observe that the solution (A.7)-(A.11) meets optimality conditions (13) if
a(t) = b(t)(c: +w(t)) = 0, a(t) < U and there is sufficient time to reach a steady-state during the promotion
period, i.e., t; < t;. Furthermore, the optimal pricing policy is immediately derived by substituting the co-state
solution (A 10) and (A.11) into p(¢) = L (see optimality conditions (12)), as stated i 1n the lemma. In

2b(t
turn, this solution is feasible if p(z) > 0, Wthh with respect to (3) always holds, and p(¢) < b() (see constraint

(7)) or the same d(¢) > 0 which always holds as well because, > p(t) < W and
Wl = W* ([) = 7‘1171);5:]}765)

Thus, to complete the proof, we need to find the four breaking points and impose that #, < #3. Points #; and
t,, are found by solving a system of two equations (A.11) and (A.7) . Specifically, from (A.7) and (5) we find

that
5]
X(ts) = — / (alt) — b(0)p(t)) dt + U(ts — 1) = 0. (A.12)
By substituting found p(¢) into (A.12) we obtain

1 1 _ 1 2 2
2(01( )+az(2—fs))—z(bl(fs—f1)+b2(f2—fs))(cr+wl+h fl)*;‘h (bi(t; — 1)

+ b2(t§ - tg))a

Ult,—t) =

which along with
Ccr+Fwy =c¢ +w —hi(tz — tl)
from (A.10) and (A.11) results in the system of two Eq. (19) in unknown #, and ¢, as stated in the lemma.
Similarly, X (&) = U(ty — t3) — [*(a(t) — b(¢)p(¢)) dt = 0, which results in

3

U(ff — 13) = %(GI(M — lf) + az(lf — f3)) — é(bl(m — tf) + bz(ff — l3))(Cr +wy — h+t3)
—%h*(b,(tﬁ — 1)+ by(ff — £2)). (A.13)

Considering (A.13) simultancously with equation
Cr + wy +h+(l‘4 — 13) =c +w
from (A.10) and (A.11) results in two Eq. (20) for 73 and #4 stated in the lemma. [

Proof of Lemma 4. In contrast to Lemma 1, where state and co-state variables were uniquely fixed at a con-
stant level, the presence of a transient state between steady-states implies only that X(0) = X(7) and
W(0) = y(T), as determined by (11). Thus, one may assume that there may be an optimal solution, different
from that derived in Lemma 3, which provides the same optimal value for the objective function (2) and meets
(11). In what follows we show by contradiction that there is no other optimal solution than that derived in
Lemma 3. Specifically, there could be two alternative solutions for the co-state variable which at steady-state
is Y(¢) = ¢; +wy, as defined by Lemma 1. In the first solution, the steady-state could be followed by an
increase of (¢), rather than a decrease as described in Lemma 3. With respect to the optimality conditions
(12) and (13), this implies that the retailer orders at maximum rate U and sets increasing prices, which in turn
decreases the demand. Since X(7) = 0 at a steady-state, this change immediately results in positive inventories
(see Eq. (5)). Then according to (10) /(¢) = A" > 0 until the end of the considered period 7, i.e., condition (11)
will never be met.

The other alternative is characterized by decreasing (¢) (as in Lemma 3), but not entering a new steady-
state, ¥/(¢) = ¢ + wy. Then according to (12) and (13), the retailer’s price should further decrease and no
products should be ordered after point #,. This implies that the demand increases and the inventory level falls,
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becoming more and more negative. With respect to (10), this means that tp(t) = —h~ < 0, until the end of the
considered period 7 which again contradicts condition (11). [

Proof of Lemma 5. First note that function (22) has a negative highest order (the third order) term. Therefore,
to prove that equation F(w,) = 0 has only one root w, = « in the range of ¢; < o < wy, it is sufficient to show
that F(c¢s) > 0 and F(w;) < 0.
The fact that F(cs) >0 is observed from (22) by substituting w, with ¢;. This reduces (22) to
Fles) =d"(w —cs)[t1 — t4]:Vz +U(tr —t5) — U(ts — ) +d**(t3 — 1), which is positive if [—t4 + tl]:M > 0.
Calculating the derivative of #; with respect to w, we obtain )

all, = 1 (b~ )V} (U N e wl))) (b2~ by),

which is always positive as U >a, and M < by(er + wy). Calculating the derivative of 74 with respect to w,
we find
-1 1 by(wy —w 1
], = [h+(b2 - bl),/D;] <U —za+ % +3balec+ w1)> (bs — by),

which is always positive as well. Thus, we conclude F(c;) > 0.
Similarly, from (22), we find

F(wy) =d"(wi =)ty — ta],,, + Uty — 1) + U(ws — ¢))[( = 13)],

w2

—U(z — 1)
H = el — 0L, — 2

— = and 5], = [1],, + % we have

(l3 - fz)(Wz - CS) + ([3 - lz)d**.

Since [to],,, = [11],

wy

F(Wz) = d*(Wl - CS)[ll — ZL4];,2 + U([f - fs) + U(Wz — CS) ([(ll — ZL4)];,2 — |:hL + hi+:|> - U(t3 - lz)

s — ) ([(t1 . {hi + /%D - % (65 — 1) (W — ) + (85 — 12)d™

Then substituting w, with w; and denoting

URs = Uty = 1) = " = el =, = (U = ) om = e (It = ), — |- +3])

. b
- (d - 32<W1 - cs)> (s — 1),
n—ba(ertw
2

where d = ¢ ) and requiring F(w;) < 0, we have # — t;, < R, as stated in the lemma. Finally, recalling
that according to Lemma 3, #; > t,, we find

1 1
b=ty = =t A Ay O =) (G4 ) 20
Thus, denoting, R, = —A4] — A5 + (w; — wy) (5= + %), we require t; — &, > Ry. O

Proof of Theorem 3. The proof is immediate. According to Lemma 5, F(w,) = 0 has only one root in the fea-
sible range of ¢, < o < wy, therefore the optimal wholesale price it defines is unique. Furthermore, according
to Lemmas 3 and 4, p*(¢) and u"(¢) are unique and feasible if 73 > 1, and a(¢) — b(¢)(c; + w(¢)) = 0 hold.
Substituting into the latter the corresponding values for b(7) and w(¢), we obtain the conditions stated in The-
orem 3. [

Proof of Lemma 6. It is shown in Lemma 3 that the demand increases starting from ¢, and returns to the
steady-state level at #4, so that f:‘ u(r)de = f:‘ d(t)de. Since u(t)=0 for 1, <t <t and f <t <ty, ie.
ft? u(t)de = ffu(t) dr and the demand in the transient state during these intervals of time is greater than
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the demand in the steady-state, it is sufficient to estimate an increase in the total order quantity during period
[%s, t¢]. Specifically, substituting the minimal demand at ¢=1¢; and ¢= ¢ (see Lemma 3), a, — byp, where
p=pt;)=p(), we find for the transient state f:‘ u(r)dt > f: d(t)dt > (ay — bap)(tr — 1),

p= “”bz“ﬁgz’hi(*’”)) < “2+h22(b”2'+w'>. The total order in a steady-state is [ d(r)dt = (ar — bip*) (1 — 1),
p= %ﬁ'*‘m(see Lemma 1). Thus, the difference per time unit is (ay — byp) — (a) — bip*) =
%(az — by(e; + wy) — (a1 — bi(c; +wy))). Next, taking into account that a; = g+ b P and a, = g+ byP, we
have per time unit, (ay — byp) — (@) — bip*) = %((P — ¢ —wy)(by — b)) > 0, as stated in this lemma, where

w(t) = wy = %b‘l"“) (see Theorem 1). O

Proof of Lemma 7. The proof is similar to that of Lemma 3. The difference is that the solution defined by
Lemma 3 will remain optimal under random disturbances with respect to the stochastic conditions (16) and
(17) if the breaking points do not change, that is

X(6) = = [ (alt) + &) ~ BOp(6, ) di-+ U~ 1) =0,

|

X(t) = Ul -1 - | " (at) + e&) - bO)p(t, &) di = 0 (A14)

3

and Egr(o Y (t, &)] = Y (¢), where y(t) is determined by (A.10) and (A.11). The latter is ensured for a steady-
state by the conditions derived in Lemma 2 and for a transient state by X(¢,¢&) <0 for # <t <1,
X(t,&) > 0 for t3 < t < t4 (see conditions (10)). Thus, we need that in addition to (A.14) (which with respect
to (A.12) and (A.13) simplifies to [, e,(¢)ds = [;* e,(¢)dz = 0), the following holds

X(t,¢) =— /t(a(r) +e (&) —b(t)p(r,E))dt+U(t—t) <0 fort <t<t, and

4

Xt)y=U(t—t;) — /[(a(‘c) +e (&) —b(t)p(r,&))dt = 0 for 13 < t < ty,

3

as stated in the lemma. [O

Proof of Theorem 4. Similar to Theorem 2, we note that calculating the objective function (2) and taking into
account Lemma 7 and E[e,] = 0, we obtain (21) and again the optimality condition (22). Therefore, the proof
can be concluded with the same arguments as for Theorem 3. [
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