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A Time-Decomposition Method for
Sequence-Dependent Setup Scheduling under
Pressing Demand Conditions

Eugene Khmelnitsky, Konstantin Kogan, and Oded Maimon

Abstract—This paper develops a method for continuous-time identical machines, given lot sizes and a work-loading con-

scheduling problems in flexible manufacturing systems. The straint on the maximum makespan deviation of each line from
objective is to find the optimal schedule subject to different the average

production constraints: precedence constraints (bills of mate- . .
rials), sequence-dependent setup times, finite machine capacities, The quadratic assignment problem approach [3], [4] and the

and pressing demands. Differential equations along with mixed aforementioned optimization approaches still suffer too much
constraints are used to model production and setup processes in afrom the curse of dimensionality, even if the best available
canonical form of optimal control. The proposed approach to the  methods for obtaining optimal or near optimal solutions of such

search.for the qptimal solution.i.s based on the maximum principle problems are applied. This was the case when approximation
analysis and time-decomposition methodology. To develop fast

near-optimal solution algorithms for sizable problems, we replace Wa,s accom.p“Shed' for. 'nSta.nce' by a I'near programmmg
the general problem with a number of subproblems so that solving @djustment in a quadratic assignment algorithm [4]. Following
them iteratively provides tight lower and upper estimates of the a mixed integer formulation of the joint problem of lot sizing
optimal solution. and scheduling, six initial setup cost estimators were suggested
and evaluated to reduce the overall costs in various production
I. INTRODUCTION conditions [5]. A two-phase heuristic approach, which can be

ONSIDERABLE effortis spent on the complicated task oV.Sed asa suboptimiz_ation methoq, was proposed for the simple

scheduling in flexible manufacturing systems. Scheduli ngle-stage.productlon system with sgquence-dependent setup
remains among the hardest optimization problems, a difficul es_[6]. ;I'h;s gp![aroagh IS ba:jse(:_on smr’]lu(ljatled annealing and a
that increases further when sequence-dependent setup time Ic rtllie o de e”*;]”?e ![oro gc |ontsc € ul;es. f variables b
introduced. Due to the limitations of some technological oper- € other approach IS lo reduce the number of vanables by
ations and machines, such setups are frequently found in &?_nadenng dynam_lc contmyousﬂme models of the scheduhng
ferent industries. The manufacture of semiconductor lines, oblem W'.th the aid of opt|ma! control theory.' Kimemia and
example, involves lithography of different layers of wafers, in= erghwm f|r§t presented a flexible manufacturmg system'as a
curring layer-dependent changeover times. Such dependen %%tmuou?-tlme producI:_t Ttl)(l)w pa;stljngﬁ thrOl;ghT\r/]vorkdstatlpbnsd
are found in the food industry (especially in blending and pack- ere setups are negligible) and buffers [7]. They describe

aging operations), as well as in the consumer goods and m 2 t.’y differential equations. The OF’“’“‘?" flow was foun.d from

: T : the linear problem formulated at required points of time by
rials fabrication industries. . t functional. Si th thod I its effici
Despite the well-known combinatorial explosion, some Oa/_arylng alﬁ)s Iul;]'(l;l |onfa. tm(':el N ;ne. O,f, OS?S : ts € |c;entcy
timization techniques have been developed to cope with sta\’t\f@en muitiievel bills of materials and significant Setup efiects

models of the scheduling problem. A mixed integer linear pré’—re added 1o Fhe model, the apprpach commqnly adopted is to
gompose hierarchically the entire problem into a number of

i If ) hedull 17
gramming model for sequence-dependent scheduling proble > able ones.

and a recursive technique were proposed in [1]. However, ortl ) : . :
9 brop [ >{;‘At the first hierarchical level, target production rates are de-

small-scale production problems are in the range of existi . . . . .
mixed integer linear programming algorithms. I%ﬂed for the given demand profile (Kimemia and Gershvv_ln S
aroblem). The input to the next level comes from the previous

Deane and White in [2] developed a specialize ) .
branch-and-bound algorithm for similar problems and r&@ne and includes production rate targets that have to be tracked

strictions, in which there are parallel production lines Wit@S closely as possible by scheduling mag:hme Setups. Hovv_ever,
or the approach to be useful for real-time control, tracking
policies should be simple and of a distributed type [8]-[10].
When dealing with distributed tracking policies, an important
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and setup changes are considered simultaneously and syncbosssumed products according to the bill of materials selected
nized at the same level. Then, stability is ensured by an offttr manufacturing. In order to switch over a machine from one
mization procedure, despite significant setup times and mulstate;j onto another;’, a setup must be carried out. The setup
level production structure. This direction extends Kimemia ariine 7%;,;- is sequence-dependent.
Gershwin's approach only for the case of completely reliableTo formalize the production process, we shall operate with
machines. Although deterministic control problems do not dproduction rateswy;(¢) of machine % in state j, defined
rectly yield the solution of stochastic control problems, they camlative to the capacity;; of the machine for every product
serve to characterize the behavior of optimal policies and ap¢ = 1,-- -, I. Therefore, the production rate control variable
proximate the solution of a stochastic scheduling problem [12},;(t) & [0, 1] reflects the portion of the machine capacity
Therefore, the deterministic consideration could be viewed aslized at timet. At the same time, the setup process in the
a first step to solving complex scheduling problems in a stflexible cell will be controlled by the setup ratey;, (¢),
chastic environment. To implement the approach, a sequenattere;j < j' and0 < wy;;» < 1/Ty;; if the machine is set
independent setup was viewed as a continuous process agmfrom statej onto j/, and0 > wuy;;» > —(1/T,;) if the
flicting with the production process. Both processes were themachine is set up from stagé onto j. Note, by defining the
described by differential equations with controllable produdirst state index iy, ;- (¢) to be always less than the second
tion and setup rates. Analysis of the maximum principle fane, we decrease by half the number of setup control variables
the problem yielded analytical properties of the optimal solassociated with machink which in our statement is equal to
tion which became the basis of iterational numerical methods$k)(.J(k) — 1)/2.
[13], [14]. We model the flow of product through its buffer of current
The present paper proceeds in the latter direction to stuldyel X;(¢) by the difference between the cumulative production
complex dynamic scheduling problems. of the product in the cell and its demadg(¢)
e Setup and production processes are modeled and ac- .

counted for in optimization in an equal manner (in Xi(t) = Ewki(t)viki — di(0)- @

contrast to the standard decomposition approach where ki

setups are heuristically inserted at a lower hierarchical The setup process is modeled by the dynamic transformation

level). of state variablé/,,;(¢). State variablé/’,;(t) is equal to one
* The scheduling model incorporates now the most generahen machiné: is in statej; V;,;(¢) is equal to zero when ma-
sequence-dependent setups. chinek is not in statej; and it is in the range between zero and
* A new method is developed to capture large-scale flexibime if the machine is currently being set up either from or onto
manufacturing systems. statej
» Lower and upper bounds are derived to estimate the.
quality of the obtained solutions. Vig(8) = D g (8) = > wgyr (B), Vii(t) 2 0. (2)

Since the setups are allowed to be sequence-dependent, the >3’ 3>

numerical methods suggested so far become computatid@ive boundary scheduling conditions for (1) and (2) are

ally intractable even for small-scale flexible manufacturing

systems. The method developed in this paper is based on a  Xi(0) = X7, V() =V, Y V=1 @)
cyclic replacement of the original problem with a number of J

reduced problems, which can be effectively solved by grggoth constraints (2) and (3) ensure that each machine carries out
dient time decomposition procedures [15], [16] in large-scajgy more than one technological operation at a time.

systems, where the straightforward time decomposition [14]Natural capacity constraints are imposed on the control vari-
and shooting methods [13] fail. Moreover, when demand jg|es

pressing, tight upper and lower bounds of the optimal solution
are obtained, and the method is proven to provide the solution wr; (8) 2 0,
which converges to the optimal of the original problem.

1
Tk]]/ ’

< ungy () <

Ters (4)
Note that we here extend the setup concept. The setup rate is
1. STATEMENT OF THE GENERAL PROBLEM Commonly ﬁXed, Wh||e we Consider |tS ﬁxed Value as the max-
) ) i ) imal one and allow the setup to be carried out at a slower rate.
We consider a flexible manufacturing cell operating on §,,ch sjow setup of a machine is proved in the next section to be
number of productd (including raw materials, subproductsgqivalent to the regular setup followed by idling the machine.
assemblies, disassemblies, and end products). The cell cpRyg as is the case in industry, slower setups never occur on
sists of K' machines, each of which may be in one.bft).  gptimal trajectories. At the same time, the new concept of setup
]f =1,---.K d|_fferent stat_es ata t!me. Each state of a mach'réﬁTows the problem to be stated in the canonical form of optimal
is a technological operation carried out by the machine. Fg5ntro| which, in turn, allows the optimal behavior of the pro-
each maching and its statg/,j = 1,---, J(k), the operation qction system to be studied analytically.
is modeled by vectow;,; which designates the capacity of gjnce production isimpossible during setup process, a special

the machine when producing or consuming (in this ca8¢ resriction is imposed on the two conflicting processes
is negative) product = 1,---,1. Thus, every technological

operation j corresponds to a subset of the produced and wiy (8) < B(Vy,;(8) — 1) (5)



640 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 4, APRIL 2000

TABLE |
CAPACITIES OF THEMACHINES (PRODUCT UNITS PER DAY)

mellow, =1 sustain, j=2 perk, /=3 turbo, j=4
Blender A, =1 75 75 75 75
Blender B, /=2 60 60 60 -
Blender C, /=3 75 75 - 75
Packager A, k=4 150 125 175 150
Packager B, /=5 75 60 90 75

where©(V) is a unit step-functiong(V) = 0if V < 0 and A for all sorts of mixtures, blendeB for only mellow, sustain,
oV)=1ifV >0). and perk mixes, blendet for mellow, sustain, and turbo, and
The performance measures most often used to judge the pws packagerst and B for all brands.
ductivity of manufacturing lines are work-in-process (WIP) and The structure of the modeled cell is shown in Fig. 1, where
the degree to which the line meets the demand profile. Thet#enderB(k = 2) has three states and currently is in state 1
fore, our objective function includes penalties for both the difdarkened area) where it mixes light 9 and medium = 10
ference between buffer levels of WIP (subproducts) and safdétgans to produce mellow mixtufe= 5.
stock levels, and for demand violation (end products) along aAccording to Table | which presents machine capacities, the
given planning horizo?” mellow mixture can be produced by blendgno faster than 60
units/day. Thus, the maximal capacity of mellow mixture 5
1 57T } } a2 ) production on blendeB(k = 2) in statej = 1is vz2; = 60
5/0 Zpi()‘i(t)) (Xi(t) = X7)" dt —min  (6) ynits/day, while the maximal consumption rates of the light
v 9 and medium: = 10 beans ar@gs; = —0.8 - 60 = —48
units/day andi g1 = —0.2-60 = —12 units/day. The negative
1 e . 5 . values ofwv;; correspond to the materials needed to produce
pi If X;(t) 2 X7 andp;(X,(2)) = p; otherwise. Penalty co- o parent item while the positive value is assigned to the latter.

efficientsp; andp; present, r_espectively, buffer-carrying COS\|| the other parameters w2, are set at zero because they are
whenX;(¢) > X7, and penalties for shortages (stockout), Wheﬁ‘either produced nor consumed in this blending operation.

Xit) < X7 [17]. Since the sustain mixturé = 6 can be produced by all

Example: Prior to iI'Iustrating the stated problem, we have t‘Blenders, the flow of this mixture through its buffer is described
emphasize here the importance of a proper choice of the plgQ-,o following differential equation:

ning horizon7'. Specifically, we see at least two reasons no
to schedule the system over very long time horizons. First, dif-
ferent long-term factors of the production environment, such as
machine breakdowns, customer orders and costs, are unlikely to — 125w (t) — 60ws2(t)
remain unchanged. Second, the computational burden increases
as the planning horizon grows. When setting the time scalewihere the first three terms of the right-hand side correspond to
is to be related to the setup times featuring the studied mahe blenders which produce the sustain mixture and fill in its
ufacturing system. For example, the planning horizon can baffer, while the remaining terms are for the packagers which
designated at no more than 100 times minimal setup time in tbensume the mixture and empty the buffer. The other ten pro-
system. On the other hand, when the horizon is too short, so tHattion equations are formalized similarly.
it is comparable with the maximal setup time in the system, the As shown in Fig. 1, blended (k = 1) is currently set up (no
resultant scheduling might not make any practical sense. Theslarkened area). The setup equation (2) and setup rate bounds
fore, it may be designated at no less than ten times maxinpaksented in Table Il take the following form for stgte- 2 of
setup time. blenderA:

We consider a flexible cell for coffee production which oper-
ates on three raw materials (light, medium, and dark beans); four v, () = w;15(¢) — u123(t) — u124()

whereX? are the given levels of safety stocks andX;(t)) =

Xo(t) = 75wya(t) + 60wos(t) + 75wsa(t)

coffee mixtures according to preset recipes (mellow mix: 80% 1 1 1 1

light and 20% medium beans; sustain mix: 50% light and 50% g < “12(t) < 770 —55 Sws() < ¢

medium beans; perk mix: 10% light, 20% medium and 70% dark 1 1

beans; turbo mix: 20% medium and 80% dark beans); and four ~ 75 < wi2a(t) < 10

end products, one for each coffee mix (mellow, sustain, perk,

and turbo brands). Here, for exampley;12(t) corresponds to the setup rate be-

There are two stages of the production process, naméheen stateg = 1 and;j = 2. The value ofu12(¢) is positive
blending and packaging, that are necessary to produce the eten the blender is set up frojn= 1 ontoj = 2 and is nega-
coffee products. The cell has a total of five machines: blend@re when the setup is carried out in the opposite direction. The
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V(0
j=1-4
LLL} Bilender A (k=1)
X.(0) X(8)
Mi
Bean buffers =143 ixture buffers
@Blender
> B (&=2)
i=9-11 \/ j=1-3
’ i=5-8

Blender C (k=3)
Fig. 1. Structural model of a coffee production cell.

planning horizori’ is chosen to be equal to 25 days, which lies
in the rational range discussed above.

Ill. ANALYSIS OF THE SYSTEM'S EXTREMAL BEHAVIOR

In order to obtain analytical properties of the optimal solu-
tion, we first approximate the step-functi@{l" — 1) in (5) by
a sequence of continuous functiofigV") which will prohibit
production during setups astends to infinity [13]. The max-
imum principle [18], [19] can be applied to study the problem,
since we have chosen state varialfl&s V') as absolutely con-
tinuous, control variable&v, v) as measurable bounded func-
tions, and functions specifying differential equations and con-

straints (1)—(6) are continuous with respect to the state and con-

trol variables.

A. The Maximum Principle Formulation

The maximum principle asserts that there exist adjoint
variables which are left-continuous functions of bounded
variation %, (t), p;(t), piecewise absolutely continuous
functionsy;* (), and measurable functions;(¢). The primal
and adjoint variables satisfy the following conditions:

» Nonnegativity

ari(t) 20,  dug;(t) > 0. @)
» The dual system and transversality conditions
B (1) = pi(Xa(1) (Xi(8) — X7);

i (T) = 0; ®)
by (t) = —ar; (8) fr, (Vi (1)) dt — dyun (£);

(T +0) = 0; )

Whereakj(t) = Ez 1/17)(@)”%
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V(0
Packager A (k=4)
Xi(1)
j=1-4
Brand buffers
j=1-4

i=1-4

Packager B (k=5)

Note that mixed constraint (5) now takes the following
form:

0 < wi;(t) < fu(Vas(1))

and becomes irregular at poivit; () = 0, i.e., by varying
only control variablew; (¢) it is impossible to move this
point inside the area defined by this constraint. This irreg-
ularity causes the measurés;,,; (¢) to appear in (9).
The global maximum principle

The optimal control strategy is achieved by maxi-
mizing, for each, the Hamiltonian

H=-— P (0) (Xi(t) - X7

D) | D wngi () = Y unp (@)
ki

> >3

+ Z P (t) wa(t)vikj —di(?) (10)
i kj
subject to (4), (5).
« Complementary slackness
ar; () (wi; () — f(Va;(t))) =0;
T
/0 Vi () dping (1) =0. (11)

The economic interpretation of the adjoint variables is
similar to the well-known “shadow price” interpretation
and is discussed in [20]. Specifically;* ()X is the
change, accumulated tg in the maximum attainable
value of the objective function whek (¢) is increased by
0X.
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TABLE I
PRODUCT CHARACTERISTICS (BRANDS: 1-MELLOW, 2-SUSTAIN, 3-PERK, 4-TURBO; MIXTURES: 5-MELLOW, 6-SUSTAIN, 7-PERK, 8-TURBO; BEANS:
9-LIGHT, 10-MEDIUM, 11-DARK)

product, i 1 2 3

cost p; per square product

unit per day, 107 3 3 3 2 2 2 2 0 0 0
cost p? per square product
unit per day, 10 1 1 1 1 1 1 1 0 0 0

initial inventory, .X; ,~°

200 200 200 200

100 100 100 100 900 900 900

safety level, X;° 0 0 0

0 0 0 0 0 0 0

B. Optimal Production and Setup Regimes

The following three lemmas study the extreme behavior of

i) wpjy(t) € [=(1/Thyry), (1/Tizpr)l, whenpy, (t) =
y;(t) (singular setup regime between statesd;’).

the system with the aid of the maximum principle. The proofs n

of the lemmas are relegated to the Appendix.

Corollary 2.1: Given problem (1)—(6), on the optimal solu-

Lemma 1: Given problem (1)—(6), on the optimal solutiontion of the problem, singular setup regimes iii) can be replaced

of the problem, the production rate of a machinian statej is
defined as:
I) wkj(t) = fn(VkJ(t)), Whenzi z/)f((t)vm > 0 (fU"
production regime);
i) wi;(t) € [0, fn(Viy (t))], when3Z, 9% (tyvir; = 0 (un-
derproduction regime);
i) wy;(t) = 0, whend_, X (t)v;r; < 0 (idle regime). m

with either regime i) or regime ii) followed by no-setup regime:
iV) ukjj/(t) =0, Wheni/),tfj,(t) = Z/),E; (t) |
Lemma 2 and its corollary show that although the setup
process is continuously controllable in our model, there always
exists an optimal solution where the setup rates take on only
their boundary values. The following lemma finally formalizes
the conditions when a machine can be set up, i.e., the lemma

Lemma 1 determines uniquely optimal production rates for ti§¢termines a point of time and a new machine state when and
standard regimes i) and iii) and a switching surface for the sithere the machine can be changed over.

gular regime ii) in terms of the dual variables. The unique op- Lemma 3 (The Necessary Setup ConditiorSh the optimal
timal production rate for the singular regime is derived in theolution, if a machiné is being set up from stateonto statey”

following corollary.

Corollary 1.1: Let machinek be the only machine which is

on regime ii) in interval of timét, ,¢,] and

0= Z birdi(t) + cr; <1, whereby,; = —biiti
@

>_piviy
[
and

> wiy (Bviny

W5 Fhj

Chj = — Z bikj
then
wkj(t) = Z dzkjdz(t) + ckj- |

Evidently, if several machines are on regime ii) simultane-
ously, then production rates for these machines are determin

in the same way.

onintervallt,,t, +t], t > Ty;;, then

Z?/)ZX (ts)vinj = Z?/JZX (ts + t)vinjr- (12)

[ |

Thus, the optimal scheduling trajectory consists of a sequence
of setup and production regimes, which are changed over only
at momentg, satisfying (12).

Example (Continued):The necessary condition for a setup
from statej = 1 onto statej = 2 of blenderA(k = 1) in our
coffee example is:

7595 (t,) — 0.8 - T5g (t5) — 0.2 - T5¢70(t)
= T5¢8 (ts + 1) — 0.5 753 (ts + 1)
— 0.5 75075 (ts 4+ 1)

d . -
weheret > 1.5. With respect to the product characteristics shown

The above lemma with its corollary sustains an expected éQ_TabIe Il, the dual differential equations for determining, for

X
tremal behavior of the system during the production proceg(,ampleﬂ/’5 (t) are

namely, either machiné is fully loaded [regime i)] or idle P (1) = 21073 X5(h), if X5(¢) >0,
[regime iii)], or it is underloaded [regime ii)]. Below, nontrivial ;|
conditions for optimality of the setup process are derived. sy L )

”(/}5 (t) =5.10 X;)(t), if X;)(t) < 0.

Lemma 2: Given problem (1)—(6), on the optimal solution of

the problem, the setup rate of a machinewhich is switched  The analytical properties proven in the above lemmas and

between stateg andy’, is defined as:

i) wrjj(t) = 1/Thjj, whenyl, (8) > ¢} (t) (setup from

J onto j');

i) urjjr(t) = —(1/Twjr;), whenyp, (1) < 4y;(t) (setup

from j’ onto 5);

illustrated in the example allow shooting-based numerical
methods to be constructed for solving the primal and dual
systems (1), (2), (8), and (9) as a two-point boundary value
problem. However, such methods have proved to be efficient
only for small-scale production systems [17]. In fact, for



KHMELNITSKY et al: TIME-DECOMPOSITION METHOD

643

TABLE Il
SETUP TIMES (DAYS)

T Tizs Tw Ta Tz Tau T Tz Tas Ta T Ta
Blender A 05 03 18 09 05 18 04 20 07 10 15 10
Blender B 05 04 - 0.7 0.7 - 1.5 10 - - - -
Blender C 10 - 05 10 - 03 - - - 05 03 -
PackagerA | 08 05 03 07 10 10 04 10 03 03 07 05
Packager B 10 05 05 10 10 05 05 10 03 10 07 05

scheduling problems with dynamic demands, solving tleven sequence of setups [functio¥ig;(¢)]. The problem for-
corresponding two-point boundary-value problem becomesulation follows:
strongly exponential in the number of control variables even

for short planning horizons.

e .

When no irregular constraint is imposed on the system, the 5/0 ZPi(Xi(t)) (Xi(t) — X7)* dt — min
problem of dimensionality can be overcome by applying an al- ¢
ternative time—decomposition approach, which is of polynomial
complexity when solution accuracy is given. Since the genefibject to
problem does contain irregular constraints (5), we next decom-
pose the general problem into three subproblems which, when x4y = Zwkj(t)vikj — di(t)
subsequently solved, yield the optimal solution for pressing de- "

mands.

IV. SEPARATE OPTIMIZATION OF PRODUCTION AND SETUP

PROCESSES OF THESENERAL PROBLEM

Timing Problem: This problem deals with finding moments
of timet, (setup starts) which satisfy the necessary setup condi-

To solve the general problem, we first assume that thi®ns (12) (see Lemma 3) for a given set of dual variabigst)
machines making up the system are fully loaded and then find
the optimal sequence of machine changeovers (sequencing
problem). Secondly, we relax the full loading requirement and Zz/’;((ts)“iki = Zi/’f((ts + Tiejjr Jinj -
find optimal loading and timing of the machines for the given ¢ ¢
setup sequence (loading and timing problems). Eventually, we N _
prove that, under pressing demand, the solution of the resultAR€ Suggested decomposition leads to the problems which are

problems coincides with the solution of the general one. i ) ° ] ]
Sequencing ProblemThis problem deals with setupgeneral problem includes irregular mixed constraints (5) im-

scheduling by varying setup rates under the full loading §©S€d on both stafé,;(t) and controkuy, (¢) variables. These

the machines in the system (i.e., constraint (5) takes the foRfnStraints preventan efficient utilization of the time—decompo-
of equality: wy;(t) = ©O(Vi;(t) — 1). Thus, the system is sition methods. At the same time, mixed constraints do not ap-

controlled by only setup ratesy;; (#) and the problem is pear in any of the three problems. Below, in Lemma 5, we also

formulated as follows:

%/0 sz(Xz(t)) (Xi(t) — X3)2 dt — min

subject to

Xi(t) = Z O(Vi; (t) — Dvir; — di(t)

Vig (8) = 3wy (8) = > o (8),

>3 i'>j

X0 =X), Y Wi=1 -
J

1

ki’

Vg (t) >0

< g () < .
iy (t) Ty

1

computationally tractable for large-scale systems. Indeed, the

eliminate the state constraints from the sequencing problem in
order to further extend the scope of practical applications.

Prior to proving that the solution of the decomposed problems
is the optimal solution for the general problem, we formalize the
requirement of pressing demand.

Definition: Demand is pressing if the solution of the general
and sequencing problems defines the same setup sequence and
durations.

Although our definition of pressing demand is based on the
time—decomposition solution methodology, it implies a gener-
alization of the well-known case when the production system
is overloaded, i.e., when the demand is close to or exceeds the
system's capacity along the planning horizon.a\priori con-
dition sufficient for the demand to be pressing, which takes into
account not only the machine capacities but also the cost rela-

Loading Problem: This problem deals with the optimizationtionships, technology (bill of materials), and initial buffer levels
of the production process by varying machine rates underge given by the following lemma.
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Lemma 4: For the demand to be pressing, it is sufficient that 1
T 0.5
P t Jo
0
> Z Ving i (t), Vi, k,j. (13)
' 05
where
-
_n=10
ai(t) = min | p" (X7 - X7) (T~ 1) 1.5 n=20

step-function

T
+ / Uik T AT | . [ ]
2

kjvirj<o

Fig. 2. Step-functio®(V — 1) and its approximation functiong, (V).

To formulate the next theorem, we introduce the followinfpr large-scale systems. Therefore, we will relax the state

notation: constraints and obtain both upper and lower estimates of the
(X(t), Vi (£), ua; (£), 9 (t), and z/)’t’j(t))_somﬁon of optimal solution. To formulate the relaxation, we denote by
the sequencing problem; J»(V) a sequence of functions which convergestg” — 1)
(X7 (1), Vi (1), un;(t), and wg(*(t))_somﬂon of the WhenV > 0 and tends to the minus infinite-valued function
loading problem; whenV < 0forn — oo (see Fig. 2). The choice of such

(X;“‘*(t),V,j‘j(t),wzj(t),z/;f(**(t))—solution of both functions is twofold: to approximate the discontinuity of the
loading and timing problems as described above in thigit step-function®(V" — 1) and to penalize the violation of
section. the state constrairity; (¢) > 0.
Since the iterations of the loading problem do not change theEXa@mple (Continued)For the coffee ex.ample, the following
setup sequence, the functiolg;(£) are common for both se- @PProximating functions are selected as:
guencing and loading problem solutions. At the same time, the

iterations of the timing problem do change the location of setups (1 arctg(n(V — 1)) + 1
and loading of the machines. Therefore, an additional asterisk r 2
appears in the solution functions. iV > 0

Theorem 1: Given pressing demand and the optimal solution FulV) = =7
for the sequencing problefi; (), Vi;(t), ux;(t), ¢; (t), and " n 1 1
P (), I (X7 (), Vi (1), wi; () ande* (1)) is the optimal —5V2 + - s V — Z arctg(n) + 3
solution for the loading problem and{(*(t), V' (t), wi,(t) T " T
and«;X " (1)) is the solution of both loading and timing prob- (ifV <O,
lems, ther{ X" (), Vi (1), wi;(£),andy;X (£)) is the solution
of the general problem. and are depicted in Fig. 2.

Proof: If demand is pressing, it is sufficient to show that Lemma 5-The Lower Bound Lemmtithe constraint (5) of
the solution(X;*(¢), Vii; (1), wi; (H)uy,;(t) = Vi;(¢)) satisfies the general problem is relaxed as
Lemmas 1 and 3, Corollary 1.1, and all of the constraints of the
general problem.

Lemma 1 and its corollary are valid because the respective
(production rate) term of the Hamiltonian and the dual equa-
tion of the loading problem coincide with the Hamiltonian (10)hen the solution of the relaxed general problem is the lower
and (8), respectively. Lemma 3 is satisfied because the sohwund of the general problem for each ]
tion (X7*(t), Vii; (), wi; (1), andqyX " (t)) meets the necessary Note, that the solution of the relaxed general problem (see
setup conditions formulated explicitly in the timing problem. Lemma 5) is not necessarily feasible for the general problem,

With respect to the formulations of the sequencing aruiit, when demand is pressing, it provides a close (lower) esti-
loading problems, one can easily observe that the primahtion for the optimal value of the objective function. Indeed,
variables( X (t), Vi (Owy,; ()ug,; () = V,;} (t)) satisfy all of negative production rates (14) waste time and capacity on pro-
the constraints of the general problem. Q.E.Oduction unspecified by bills of materials. Recalling our coffee

Although the proven theorem provides an efficient framexample, negative production rate of a packager would mean
work in the search for the optimal solution of the generahat it unpacks a brand and pumps it back to the buffer for the
problem, presence of the state constraints in the sequenaigresponding mixtures. This clearly cannot occur frequently
problem reduces still further the applicability of the approaclvhen demands for brands are pressing.

00 < wii(8) < FulVig (1) (14)
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Remark 1: Following the framework of Theorem 1, a fea- In manufacturing, numerical methods based on time—de-
sible near-optimal solution for the general problem can be obemposition were successfully applied to scheduling large
tained by, first, relaxation of the equation of the productioRMS with negligible setup times [14], [23]. In what follows
process in the sequencing problem we present two time—decomposition algorithms for both

near-optimal solutions and lower bound estimates.
Xil®) %.:f"(vk] ()i = dil?) A. An Algorithm for Near-Optimal Solution

In order to extend the time—decomposition approach to
and exclusion of the state constralit;(¢) > 0. Second, the scheduling with significant sequence-dependent setup times,
sequencing problem is solved by a time—decomposition methail iterative method outlined in Theorem 1 is suggested. The
for optimal control problems with only control constraints. Dugnethod presented here is based on the projected gradient
to the special form of functioffi,(V'), only an insignificant vio- approach which ensures monotone decrease of the objective
lation of the state constraint can occur. Therefore, then the sdlunction on consecutive iterations. In what follows, Steps 1-7
tion is approximated in a natural way to meet the excluded statethe algorithm are intended to solve the sequencing problem
constraint. Namely, on the no-setup regimes of machina with regular constraints (see Remark 1); Steps 8-13 are for
Vi, (t) which is close to one is set to one while the othiég(t)  solving the loading problem; and Step 14 is for the timing
are set to zero. On the setup regimes, the solution is left withgubblem according to Lemma 6.
change. Eventually, the near-optimal solution can be found byStep 1: Choose a feasible solution of the sequencing problem
Theorem 1. Indeed, if the solution satisfying both loading anlli(?), V4 (%), ua;j (t), t € [0, 7], (for exampleus;;: (t) = 0).
timing problems exists, then the obtained solution is the optimalStep 2: Integrate the system of dual equationg (t) =
one according to Theorem 1. Otherwise, the timing problem car(X;(¢))(X,(¢) — X?) and
be used as an heuristic to bring the solution nearer to the optimal
one. [ Sy y X

Lemma 6: Let X;(t), wy;(t), andyX () be the solution of iyt = =1 Vi (@) Z Vi (B
the loading problem for a given setup sequetiggt) and ’

< < with the right-hand boundary conditions® (7) = 0 and
Z Vi (ts)ving # Z it (s + Thjjr )vingr z/;XJ(T) = 0.
@ @ Step 3: At every point of time, calculate the direction of de-
) o ) scentsy,; /(1) = Y., (t) =1y (t) (see proof of Lemma 2). When
then there exists a small variatigrof ¢, so that the solution for ” H,(t)er (S) ) ,,(t)k;(T)_l kéi‘s),iéns »F»),(t) — 71 _, )»»/(t)
the varied loading problem improves. KT 3 kgt OO S PRI T gt TG A
gp P . f g (t) + sniy (1) < Tk thensy(t) = —T, .t —
Thus, Remark 1, Lemmas 5 and 6 define the way for eshl— o 77 ki's 77
mating the optimal solution of the general problem. Namely*#/

j k'
(t).
: : ) Step 4: Determine control variatiofiuy; ;+ () = sy, (t) as
while Lemma 5 provides the lower bound for the optimal sg- P ki (£) = esrjr(t)

lution, Lemma 6 specifies the upper estimate by allowin iterf':i‘-SteIOE along the calculated direction),< e < 1.
' P PP y 9 Step 5: Integrate the primal equation

tive improvements of admissible solutions. These results will be
elaborated upon in the next section on the basis of the time—de-

composition methodology. Vi () = > (unjrj (1) + Sunyr (t))
i>j’
V. A TIME-DECOMPOSITIONNUMERICAL METHOD
_ 3y _ N = > (g (1) + Sun e (t))
The time—decomposition method is based on decomposition >

of an infinite-dimensional optimization problem into finite-di-

mensional probl_ems qf maximiz_ing the Hamiltc_mian, formL\Zvith the left-hand boundary conditior,; (0) = V,?j.

lated _at ea_ch point of time. The_ tlme_—decomp(_)smon method ISStep 6: Integrate the primal equation

of an iterative nature. On each iteration of the time—decomposi-

tion method, the only condition of the maximum principle that .

is not satisfied is that the control functions do not maximize the Xi(t) = Z Fu (Vi (9))ving — di(t)

Hamiltonian everywhere on the planning horizon. Iterations of ki

the methods will ensure that a measure of this discrepancy from

the maximum principle is minimized. Thus, the central point ofith the left-hand boundary conditioX;(0) = X? and cal-

the time—decomposition method is the numerical constructicnlate the value of the resultant objective function (6). If the

of a descent variation of control. objective function is not decreased, then decreasrd go to
Time—decomposition methods have proved their efficienStep 4; otherwise assign,; ;- (t) = ux;; (t) + dug, ;- (t) and go

for solving complex optimal control problems with regulato Step 7.

mixed constraints [21], [22]. However, the mixed constraint (5) Step 7: Check a stop condition. For example,if,;;/ (¢)

is not regular and, therefore, the straightforward time—decorannot be described by a combination of regimes (i), (ii), and

position is not applicable to the original problem. (iv) (see Lemmas 2 and its corollary) with a given accuracy
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TABLE IV
CHANGE IN OBJECTIVE FORDIFFERENT STEP-FUNCTION APPROXIMATIONS

Unit step-function n=10 n=15 n=20 n=25
approximation
Objective value, 10°* 2221 2.206 2.195 2.190

then go to Step 2; otherwise approxim#jg(¢) (see Remark 1) time—decomposition method where both production and setup
and go to Step 8. processes are integrated simultaneously.

Step 8: Choose a feasible solution of the loading problem Step 1: Choose a feasible solution of the relaxed general
Xi(t), w;(¢), t € [0,7] for the found setup sequent&;(t) problemX;(t), Vi;(t), wi;(t), urjy (t), t € [0,7T], [for ex-
(for examplewy,;(t) = 0). amplewg, ;- (t) = 0, wy;(t) = 0].

Step 9:Integrate the dual equation z/);x (t) = Step 2: Integrate the system of dual equat|0m§
pi(X; () (X;(¢) — X7) with the right-hand boundary p,(X;(¢))(X;(t) — X7) and
conditions;X (T) = 0.

Step 10: At every point of time for which,;(t) = 1 with a W (+ ! (Vi DX (t)ving
given accuracy, calculate the direction of descent it = k(8 Z o "
ski(t) = > P (Bving. if wi;(t) = fn(Vi;(t)) and<p} (t) = 0; otherwise with the
i right-hand boundary conditions (7) = 0 and+,;(T") = 0.

Step 3: Atevery point oftime, calculate the direction of setup
Whenw;(t) + si;(t) > 1, assigns,;(t) = 1 — wy;(t); when rate descensy; i () = p () — Pt ) Whenuy;;(t) +

wj(t) + 515 () < 0 thensy;(t) = —wy; (1) spi(t) > T, assignsy (1) = 1.5 — gy (t); when
Step 11: Determine control _varlz_;\tloﬂwkj(t) = esp,;(t) as urjj (£)+sp,,(t) < _kaj}j thensy, ., (t) = T];j}j_ukjj’(t)'
a step= along the calculated directiof),< e < 1. Step 4: At every moment of time calculate the direction of
Step 12: Integrate the primal equation production rate descent
X, () = (1) + Swns () )ving — di(t w (o
(1) %}:(%( )+ Swi (8))Jving — di(t) S0 () = Z DX (Bving.

with the left-hand boundary conditioki;(0) = X? and calcu- Whentwy; (£)+sy;(t) > 1thensy, (t) = L—wy;(£); if wye; () +
late the value of the resultant objective function (6) If the objegw (t) <0 thens“’ () = —wiy (t)
tive function is not decreased, then decregseherwise assign Step5 Determme control variatiofuy, ;- (t) = esy;; (t) as
wij(t) = we;(t) + bwi;(t) and go to Step 13. i is greater 3 stepe along the calculated direction, < = < 1. ”
than a given number then go to Step 11; otherwise deckease step 6: Determine control variatiofiwy; (t) = esy;(t) as a
and go to Step 8. stepe along the calculated directiof,< ¢ < 1.
Step 13: Check a stop condition. For example,f;(f)  Step 7: Integrate the primal equations
cannot be described by a combination of regimes i)-iii) (see
Lemma 1 and its corollary) with a given accuracy, then go to .
Step 9; otherwise go to Step 14. Xi(t) = Z (W () + dwiej (8)ving — di(?)
Step 14: If all of the setups satisfy the necessary setup condi- kj
tions (see Lemma 3) with a given accuracy, then exit; otherwis¥} )
shift each of the setups which do not satisfy these conditions on Vi (t) = Z (i () + Suyr i (L))

a step( in the directions defined as follows: iz’
= 3 (g (8) + Sy (1)
if Zz/} U7k1 >Zz/} t +Tkjj )U7k1 JZ>:J 7 7

then assign, = t, + C

. - ition%. (0) = X9 . V,..(0) = VO.
otherwiset, = t, — (. with left-hand boundary condition’; (0) 9, Vs (0) = V2

and calculate the value of the resultant objective function (6). If
the objective function is not decreased, then decreasel go
Go to Step 8. to Step 5; otherwise assign;; (t) = wuyj; (t) 4 du;y (t) and
wij (1) = wi(t) + bwy; ().
Step 8: Check a stop condition, i.e. fo Sku (t)? +
According to Lemma 5, the relaxed general problem contaisg; (t)?) dt is less than a given tolerance then stop; otherwise
no irregularity and therefore can be efficiently solved by thgo to Step 2.

B. A Lower Bound Algorithm
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/ State 1
Blender / state 2
A
/ State 3
00 State 4
2 4 6 3 10 12 14 16 18 28 22 24
135 7 9% 1113151719 21 23 25
/ State 1
Blender
B / State 2
/ State 3
0.0
2 4 6 8 10 12 14 16 18 20 22 24
135 7 9 1113151719 21 23 25
/ State 1
Blender
C / State 2
/ State 3
"0 2 4 6 % 10 12 14 16 12 26 22 24
1357 06 1113151719 21 23 25
Fig. 3. Near-optimal solution for blenders.
VI. NUMERICAL EXAMPLE AND COMPUTATIONAL RESULTS The near-optimal solutiofx = 25) is depicted in Figs. 3

and 4 for all stages of the production process. Fig. 5 shows the
This section presents a solution of the coffee example agédmand profile and buffer behavior for the end products over
summarizes computational experiments conducted for differehe planning horizon.
scale manufacturing systems.

B. Statistical Results

A. Application of the Method to the Coffee Production Cell ) o ]
The scheduling program, realizing the developed algorithms,

To analyze the convergence of the solution, the unit step furis-written in C++, and is provided with a user-friendly inter-
tion was approached by the sequence of approximating fufigee, which is a Visual Basic project running in a Windows en-
tions (see Fig. 2) with parameterrunning from 10 up to 25.  vironment. This software has been utilized for scheduling of

The lower estimate of the objective function found by thehe avionic harness manufacturing system at Sikorsky Aircraft
lower bound algorithm for 3.2 min at IBM PC-486-66 MHz isCorporation; 3-axis Monarch vertical machining centers at a
2.10 - 10* cost units, while the upper estimate provided by thgepartment of Remington Arms Co.; textiles and forming ma-
near-optimal solution algorithm for 4.3 min %19 - 10 cost chine centers in rigid panel manufacturing at Albany Interna-
units forn = 25. Table IV shows change in the objective otional HPM; final assembly at Spectra Inc.; high demand bottle-
the near-optimal solution, which converges to the upper boundck machines in surface mount technology at Sanders, a Lock-
estimate, as goes to 25. heed Martin Co.; six volt battery assembly for the Polaroid film
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10 —
/ State 1
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Packager 06 / State 2
A
0.4
/' State 3
02
i) o State 4
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/' State 1

(3
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Packager U9

B
0.4

02

............. State 4

L #
6B 2 4 6 & 10 12 14 16 18 20 22 24
13 5 7 9 111315171921 2325

0o

Fig. 4. Near-optimal solution for packagers.

pack at Polaroid Corp.; and heat exchanger manufacturingugiper estimates of the optimal solution. As a result, an effec-

Hamilton Standard. tive algorithm for near-optimal scheduling in realistic produc-
In the experiments, the scheduling problems were solved tign environment is developed. Computational tractability of the

both the lower bound and near-optimal solution algorithms. Tla@proach, observed in the conducted numerical experiments, of-

problems were categorized by the cumulative number of miars the possibility of successful applications for modern flex-

chine states/ K = >, J(k), i.e., the sum of states for all ible manufacturing systems.

the machines. Ten problems with different production condi-

tions (bills of materials, demand profiles, penalty coefficients, APPENDIX

and so on) were solved for every category. The averaged resultig5

are presented in Fig. 6 as the difference between the upper anglroof of Lemma 1:The maximum principle claims that the

lower estimates related to the lower-bound objective functicﬁf mal c.:ontr.ol strategy Is achlevgd by maX|m|zmg,.for each
- : : e Hamiltonian on the set of admissible controls. Since control
value, AF'. Three curves in Fig. 6 illustrate the influence of ma-

chine flexibility [J(k) from 2—4] on the gap between both estivaniableswy;(t) and wuy;(f) appear in distinct terms of the
mates. Although this optimality gap slowly grows with increas'é'am”tqn.'an (10) and since, moreover, th_ere IS no constraint
) which joins both controls, the maximization with respect to

of machine flexibility, it meets practical requirements for theé (#) andus, (¢) can be carried out separately. Let us consider
. . j y g

v_wde_range of manufac;turmg_ systems._ Th_e averaged compLﬁ;e respective (production rate) term of the Hamiltonian

tion time for both algorithms is shown in Fig. 7.

VIl. CONCLUSIONS

H=Y "9 | D wii(tvany | - (A1)
A new time—decomposition approach to scheduling sizable i kj

manufacturing systems with flexible machines and sequence-

dependent setup times is suggested in this paper. The appragghi, se this term and constraint (5) are linear with respect to

utilizes both the analytical properties of the optimal solution d%;kj(t), the maximum is reached in one of three cases stated in
rived from the maximum principle and the numerical time—dqhe lemma Q.E.D

composition methodology. The theorem proves under condi-pyqf of Corollary 1.1: Let us differentiate twice the condi-
tions of pressing demand that the general problem can be solygd regime ii). We then obtain

to optimality by decomposing it into a number of specially con-

structed subproblems. At the same time, the proposed relaxation

of the general problem significantly simplifies numerical proce- & Z X (Do = ZP‘(X‘(t))X‘(t)U‘k* =0

dures for the approach, while allowing quite accurate lower and ~ dt? p ‘ o p o B '
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Fig. 5. Buffers behavior and demand profiles for the end products.

ReplacingX;(t) with the production process (1) and denotingby b;x; andcy;, respectively, we immediately obtain

DiVikj

———— and— Z bzkj Z wik/j,(t)vik/j,

2
E :plvikj i K §7 £k j
i

/ Demand
Level

/ Buffer
Level

I Demand
Level

/ Buffer
Level

/ Demand
Level

/ Buffer
Level

/ Demand
Level

/ Buffer
Level

wkj(t) = szkjdz(t) + Crj-

649
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interval [t; + T%j,7,t2]. One can observe that the objective
e J (k) =4 function (6) does not change and no constraint is violated.
—J(k)=3 Indeed, the objective depends only on buffer levels, and in both
setup cases no product is produced on machimiring the
interval (¢, 2] which influences the buffer levels.

Likewise, a singular setup regime from statentoj can be
replaced with regime ii) on the intervgh , £, + 73 ;] and with
no-setup regime on the remaining interfial+ Ty, t2].

Q.E.D.

Proof of Lemma 3:If setup is carried out on regime i) (see

Lemma 2), then it is characterized by the setup time 13,
5 10 15 20 25 30 35 40 45 50 K and by the difference between the corresponding dual variables
(4 (t) > (1)), which are identical before and after the
setup (see no-setup regime iv) in Corollary 2.1).

Thus, the necessary conditions of setting up from stdte

Fig. 6. Optimality gap between lower and upper estimates.

2 . T )
. CcPU . ! statej’ on the time intervalt,, t, + Ty, 7], wheret, is an un-
time, min = pnear-optimal K fth S
10 solution nown moment of the setup initiation, are
i b
8 ower v v
algorithm T/)kj'(ts) :1/)kj(ts)
6 Uy (ts + Thogyr) =i (ts + Thjjr)
and

P (t) > (), t € (ts,ts + Thyyr)- (A3)

5 10 15 20 25 30 35 40 45 50 ,yk [see (2) and (4)], and therefore (9) takes the form

Zligbr?thmgémputation time for the lower bound and near-optimal solution ¢Z,(t) = —oy (t)f,/L(ij (t)) (A4)
If
S bugdi(t) + cu i (8) = —ago(8) Fi (Vi () (A5)

SinceVi; (t) andVy;- (t) do not equal zero during the setup,
is out of range [0, 1], then regime ii) cannot exist for optimahe complementary slackness condition (11) causes the measure
behavior of machiné, because constraints (4) and (5) are ndunctionsdy;(t) anddy ;- (t) to equal zero and not to enter the
satisfied. Q.E.D. dual equations. From (A3)—(A5) it immediately follows that
Proof of Lemma 2: According to the maximum principle, we

now maximize the respective (setup rate) term of the Hamil- st T ,
tonian | asonvism)
’ tS+Tkjj’
H(urjjr (1)) = wrjy (8) (Y () — ;1) (A2) = / g () fr(Vieyr (1)) dt.
ts
on the set of admissible controls (4). Whenn tends to infinity, we obtain the limit form of the nec-

The pl’OOf immediately follows from the fact that this ternbssary setup conditions
and constraint (4) are linear with respect#g ;/(’). Q.E.D.
Proof of Corollary 2.1: Let a singular setup regime from X X
) o St )Uipy = S ts + Thsjr YVinyr - A6
statej onto statej’ exist on a time intervalty, t2] of the op- ET/)Z (ts Jvinj zz/’z (ts + Thjjr )ik (A6)
timal solution, i.e., ’ ’

Likewise, if the setup is carried out on regime iii) (see
w0 () € {_ 1 1 } Lemma 2), i.e.t > 1};;, then the necessary setup conditions
v Trjrj Thjy take the form

when ¢, (1) = ¥y(0), Vag(t) = Vigp(t2) = 0, and ot (v = DB (b + t)vinr- (A7)
Vii(t2) = Vir(t1) = 1. Then from constraint (4) it follows P P

that we can replace this regime with regime i) on the interval

[t1,t1 + Tx;;7] and with no-setup regime on the remaining Q.E.D.
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Proof of Lemma 4:0One can easily observe that if the opThen, assigrt, = ¢, + ¢, ¢ > 0 and find the optimal solu-
timal production rate for the general problem takes the maxintédn X;(t) + 6.X;(¢), wx;(t) + dwy,;(t) for the varied loading
value along the planning horizon [see Lemma 1, regime i)], th@noblem. Consider the variation of the objective
the general and the sequencing problems become equivalent.

Specifically, the optimal setup sequences and durations coin- T .

cide for both problems (i.e., demand is pressing). What is left to /0 Zpi(Xi (1) (Xi(t) — X7) 6.Xi(t) dt.
show is that (13) is sufficient for regime i) to occupy the entire B

planning horizon. Indeed, let the condition of regime

Z’(/) Uzkj >0

be satisfied for every state of every machine. Then, from (8) |t/ Z

To define the sign of this variation, we replaé&’;(¢) with
varied production process (1):

A8 (Xi() / (o .

follows that
Next, changing the order of integration and taking into account
PR [ me) i - xp ar >0 (8) we obtain
t
Consequently, taking into account (1), we immediately obtain / %,: Ui (B)wng (i . (A9)
_ ZUV’“ / pi(X(7)) From condition (A8) and Lemma 1 it immediately follows that
e the variation of the objective (A9) is negative, i.e., the solution

. of the varied loading problem improves.
X0 +/ Zwk vinj — di(y) | dy — X2 | dr > 0. Similarly, the improvement of the solution can be proved for
‘ ’ ’ Y the case when

Sincew,; () is always maximal, the last inequality will not be Z 1/’ 5 Wity < Z 1/) (ts + Tejjr Jvinjr
violated if:
and variatior( is chosen negative. Q.E.D.
- szkj/ pz z( ))
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