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A Time-Decomposition Method for
Sequence-Dependent Setup Scheduling under

Pressing Demand Conditions
Eugene Khmelnitsky, Konstantin Kogan, and Oded Maimon

Abstract—This paper develops a method for continuous-time
scheduling problems in flexible manufacturing systems. The
objective is to find the optimal schedule subject to different
production constraints: precedence constraints (bills of mate-
rials), sequence-dependent setup times, finite machine capacities,
and pressing demands. Differential equations along with mixed
constraints are used to model production and setup processes in a
canonical form of optimal control. The proposed approach to the
search for the optimal solution is based on the maximum principle
analysis and time-decomposition methodology. To develop fast
near-optimal solution algorithms for sizable problems, we replace
the general problem with a number of subproblems so that solving
them iteratively provides tight lower and upper estimates of the
optimal solution.

I. INTRODUCTION

CONSIDERABLE effort is spent on the complicated task of
scheduling in flexible manufacturing systems. Scheduling

remains among the hardest optimization problems, a difficulty
that increases further when sequence-dependent setup times are
introduced. Due to the limitations of some technological oper-
ations and machines, such setups are frequently found in dif-
ferent industries. The manufacture of semiconductor lines, for
example, involves lithography of different layers of wafers, in-
curring layer-dependent changeover times. Such dependencies
are found in the food industry (especially in blending and pack-
aging operations), as well as in the consumer goods and mate-
rials fabrication industries.

Despite the well-known combinatorial explosion, some op-
timization techniques have been developed to cope with static
models of the scheduling problem. A mixed integer linear pro-
gramming model for sequence-dependent scheduling problems
and a recursive technique were proposed in [1]. However, only
small-scale production problems are in the range of existing
mixed integer linear programming algorithms.

Deane and White in [2] developed a specialized
branch-and-bound algorithm for similar problems and re-
strictions, in which there are parallel production lines with
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identical machines, given lot sizes and a work-loading con-
straint on the maximum makespan deviation of each line from
the average.

The quadratic assignment problem approach [3], [4] and the
aforementioned optimization approaches still suffer too much
from the curse of dimensionality, even if the best available
methods for obtaining optimal or near optimal solutions of such
problems are applied. This was the case when approximation
was accomplished, for instance, by a linear programming
adjustment in a quadratic assignment algorithm [4]. Following
a mixed integer formulation of the joint problem of lot sizing
and scheduling, six initial setup cost estimators were suggested
and evaluated to reduce the overall costs in various production
conditions [5]. A two-phase heuristic approach, which can be
used as a suboptimization method, was proposed for the simple
single-stage production system with sequence-dependent setup
times [6]. This approach is based on simulated annealing and a
myopic rule to determine production schedules.

The other approach is to reduce the number of variables by
considering dynamic continuoustime models of the scheduling
problem with the aid of optimal control theory. Kimemia and
Gershwin first presented a flexible manufacturing system as a
continuous-time product flow passing through work stations
(where setups are negligible) and buffers [7]. They described
this by differential equations. The optimal flow was found from
the linear problem formulated at required points of time by
varying a cost functional. Since the method loses its efficiency
when multilevel bills of materials and significant setup effects
are added to the model, the approach commonly adopted is to
decompose hierarchically the entire problem into a number of
tractable ones.

At the first hierarchical level, target production rates are de-
fined for the given demand profile (Kimemia and Gershwin's
problem). The input to the next level comes from the previous
one and includes production rate targets that have to be tracked
as closely as possible by scheduling machine setups. However,
for the approach to be useful for real-time control, tracking
policies should be simple and of a distributed type [8]–[10].
When dealing with distributed tracking policies, an important
issue is that of stability, i.e., whether the work-in-process in the
system remains under control. Realistic manufacturing based on
multi-level bills of materials and multiple machines necessitates
that all machines be synchronized for stable production. Ma-
chine stability is unlikely to be achieved by such policies [11].

An alternative to the hierarchical approach is to state a gener-
alized optimal control problem where deterministic production
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and setup changes are considered simultaneously and synchro-
nized at the same level. Then, stability is ensured by an opti-
mization procedure, despite significant setup times and multi-
level production structure. This direction extends Kimemia and
Gershwin's approach only for the case of completely reliable
machines. Although deterministic control problems do not di-
rectly yield the solution of stochastic control problems, they can
serve to characterize the behavior of optimal policies and ap-
proximate the solution of a stochastic scheduling problem [12].
Therefore, the deterministic consideration could be viewed as
a first step to solving complex scheduling problems in a sto-
chastic environment. To implement the approach, a sequence-
independent setup was viewed as a continuous process con-
flicting with the production process. Both processes were then
described by differential equations with controllable produc-
tion and setup rates. Analysis of the maximum principle for
the problem yielded analytical properties of the optimal solu-
tion which became the basis of iterational numerical methods
[13], [14].

The present paper proceeds in the latter direction to study
complex dynamic scheduling problems.

• Setup and production processes are modeled and ac-
counted for in optimization in an equal manner (in
contrast to the standard decomposition approach where
setups are heuristically inserted at a lower hierarchical
level).

• The scheduling model incorporates now the most general,
sequence-dependent setups.

• A new method is developed to capture large-scale flexible
manufacturing systems.

• Lower and upper bounds are derived to estimate the
quality of the obtained solutions.

Since the setups are allowed to be sequence-dependent, the
numerical methods suggested so far become computation-
ally intractable even for small-scale flexible manufacturing
systems. The method developed in this paper is based on a
cyclic replacement of the original problem with a number of
reduced problems, which can be effectively solved by gra-
dient time decomposition procedures [15], [16] in large-scale
systems, where the straightforward time decomposition [14]
and shooting methods [13] fail. Moreover, when demand is
pressing, tight upper and lower bounds of the optimal solution
are obtained, and the method is proven to provide the solution
which converges to the optimal of the original problem.

II. STATEMENT OF THE GENERAL PROBLEM

We consider a flexible manufacturing cell operating on a
number of products (including raw materials, subproducts,
assemblies, disassemblies, and end products). The cell con-
sists of machines, each of which may be in one of

different states at a time. Each state of a machine
is a technological operation carried out by the machine. For
each machine and its state , the operation
is modeled by vector which designates the capacity of
the machine when producing or consuming (in this case
is negative) product . Thus, every technological
operation corresponds to a subset of the produced and

consumed products according to the bill of materials selected
for manufacturing. In order to switch over a machine from one
state onto another, , a setup must be carried out. The setup
time is sequence-dependent.

To formalize the production process, we shall operate with
production rates of machine in state , defined
relative to the capacity of the machine for every product

. Therefore, the production rate control variable
reflects the portion of the machine capacity

utilized at time . At the same time, the setup process in the
flexible cell will be controlled by the setup rate ,
where and if the machine is set
up from state onto , and if the
machine is set up from state onto . Note, by defining the
first state index in to be always less than the second
one, we decrease by half the number of setup control variables
associated with machine, which in our statement is equal to

.
We model the flow of product through its buffer of current

level by the difference between the cumulative production
of the product in the cell and its demand

(1)

The setup process is modeled by the dynamic transformation
of state variable . State variable is equal to one
when machine is in state is equal to zero when ma-
chine is not in state ; and it is in the range between zero and
one if the machine is currently being set up either from or onto
state

(2)

The boundary scheduling conditions for (1) and (2) are

(3)

Both constraints (2) and (3) ensure that each machine carries out
no more than one technological operation at a time.

Natural capacity constraints are imposed on the control vari-
ables

(4)

Note that we here extend the setup concept. The setup rate is
commonly fixed, while we consider its fixed value as the max-
imal one and allow the setup to be carried out at a slower rate.
Such slow setup of a machine is proved in the next section to be
equivalent to the regular setup followed by idling the machine.
Thus, as is the case in industry, slower setups never occur on
optimal trajectories. At the same time, the new concept of setup
allows the problem to be stated in the canonical form of optimal
control which, in turn, allows the optimal behavior of the pro-
duction system to be studied analytically.

Since production is impossible during setup process, a special
restriction is imposed on the two conflicting processes

(5)
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TABLE I
CAPACITIES OF THEMACHINES (PRODUCT UNITS PER DAY)

where is a unit step-function ( if and
if ).

The performance measures most often used to judge the pro-
ductivity of manufacturing lines are work-in-process (WIP) and
the degree to which the line meets the demand profile. There-
fore, our objective function includes penalties for both the dif-
ference between buffer levels of WIP (subproducts) and safety
stock levels, and for demand violation (end products) along a
given planning horizon

(6)

where are the given levels of safety stocks and
if and otherwise. Penalty co-

efficients and present, respectively, buffer-carrying costs
when , and penalties for shortages (stockout), when

[17].
Example: Prior to illustrating the stated problem, we have to

emphasize here the importance of a proper choice of the plan-
ning horizon . Specifically, we see at least two reasons not
to schedule the system over very long time horizons. First, dif-
ferent long-term factors of the production environment, such as
machine breakdowns, customer orders and costs, are unlikely to
remain unchanged. Second, the computational burden increases
as the planning horizon grows. When setting the time scale, it
is to be related to the setup times featuring the studied man-
ufacturing system. For example, the planning horizon can be
designated at no more than 100 times minimal setup time in the
system. On the other hand, when the horizon is too short, so that
it is comparable with the maximal setup time in the system, the
resultant scheduling might not make any practical sense. There-
fore, it may be designated at no less than ten times maximal
setup time.

We consider a flexible cell for coffee production which oper-
ates on three raw materials (light, medium, and dark beans); four
coffee mixtures according to preset recipes (mellow mix: 80%
light and 20% medium beans; sustain mix: 50% light and 50%
medium beans; perk mix: 10% light, 20% medium and 70% dark
beans; turbo mix: 20% medium and 80% dark beans); and four
end products, one for each coffee mix (mellow, sustain, perk,
and turbo brands).

There are two stages of the production process, namely
blending and packaging, that are necessary to produce the end
coffee products. The cell has a total of five machines: blender

for all sorts of mixtures, blender for only mellow, sustain,
and perk mixes, blender for mellow, sustain, and turbo, and
two packagers and for all brands.

The structure of the modeled cell is shown in Fig. 1, where
blender has three states and currently is in state
(darkened area) where it mixes light and medium
beans to produce mellow mixture .

According to Table I which presents machine capacities, the
mellow mixture can be produced by blenderno faster than 60
units/day. Thus, the maximal capacity of mellow mixture
production on blender in state is
units/day, while the maximal consumption rates of the light

and medium beans are
units/day and units/day. The negative
values of correspond to the materials needed to produce
the parent item while the positive value is assigned to the latter.
All the other parameters in are set at zero because they are
neither produced nor consumed in this blending operation.

Since the sustain mixture can be produced by all
blenders, the flow of this mixture through its buffer is described
by the following differential equation:

where the first three terms of the right-hand side correspond to
the blenders which produce the sustain mixture and fill in its
buffer, while the remaining terms are for the packagers which
consume the mixture and empty the buffer. The other ten pro-
duction equations are formalized similarly.

As shown in Fig. 1, blender is currently set up (no
darkened area). The setup equation (2) and setup rate bounds
presented in Table II take the following form for state of
blender

Here, for example, corresponds to the setup rate be-
tween states and . The value of is positive
when the blender is set up from onto and is nega-
tive when the setup is carried out in the opposite direction. The



KHMELNITSKY et al.: TIME–DECOMPOSITION METHOD 641

Fig. 1. Structural model of a coffee production cell.

planning horizon is chosen to be equal to 25 days, which lies
in the rational range discussed above.

III. A NALYSIS OF THESYSTEM'SEXTREMAL BEHAVIOR

In order to obtain analytical properties of the optimal solu-
tion, we first approximate the step-function in (5) by
a sequence of continuous functions which will prohibit
production during setups astends to infinity [13]. The max-
imum principle [18], [19] can be applied to study the problem,
since we have chosen state variables as absolutely con-
tinuous, control variables as measurable bounded func-
tions, and functions specifying differential equations and con-
straints (1)–(6) are continuous with respect to the state and con-
trol variables.

A. The Maximum Principle Formulation

The maximum principle asserts that there exist adjoint
variables which are left-continuous functions of bounded
variation , piecewise absolutely continuous
functions , and measurable functions . The primal
and adjoint variables satisfy the following conditions:

• Nonnegativity

(7)

• The dual system and transversality conditions

(8)

(9)

where .

Note that mixed constraint (5) now takes the following
form:

and becomes irregular at point , i.e., by varying
only control variable it is impossible to move this
point inside the area defined by this constraint. This irreg-
ularity causes the measures to appear in (9).

• The global maximum principle
The optimal control strategy is achieved by maxi-

mizing, for each , the Hamiltonian

(10)

subject to (4), (5).
• Complementary slackness

(11)

The economic interpretation of the adjoint variables is
similar to the well-known “shadow price” interpretation
and is discussed in [20]. Specifically, is the
change, accumulated to, in the maximum attainable
value of the objective function when is increased by

.
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TABLE II
PRODUCT CHARACTERISTICS(BRANDS: 1-MELLOW, 2-SUSTAIN, 3-PERK, 4-TURBO; MIXTURES: 5-MELLOW, 6-SUSTAIN, 7-PERK, 8-TURBO; BEANS:

9-LIGHT, 10-MEDIUM, 11-DARK)

B. Optimal Production and Setup Regimes

The following three lemmas study the extreme behavior of
the system with the aid of the maximum principle. The proofs
of the lemmas are relegated to the Appendix.

Lemma 1: Given problem (1)–(6), on the optimal solution
of the problem, the production rate of a machinein state is
defined as:

i) , when (full
production regime);

ii) , when (un-
derproduction regime);

iii) , when (idle regime).
Lemma 1 determines uniquely optimal production rates for the
standard regimes i) and iii) and a switching surface for the sin-
gular regime ii) in terms of the dual variables. The unique op-
timal production rate for the singular regime is derived in the
following corollary.

Corollary 1.1: Let machine be the only machine which is
on regime ii) in interval of time and

where

and

then

Evidently, if several machines are on regime ii) simultane-
ously, then production rates for these machines are determined
in the same way.

The above lemma with its corollary sustains an expected ex-
tremal behavior of the system during the production process,
namely, either machine is fully loaded [regime i)] or idle
[regime iii)], or it is underloaded [regime ii)]. Below, nontrivial
conditions for optimality of the setup process are derived.

Lemma 2: Given problem (1)–(6), on the optimal solution of
the problem, the setup rate of a machine, which is switched
between statesand , is defined as:

i) , when (setup from
onto );

ii) , when (setup
from onto );

iii) , when
(singular setup regime between statesand ).

Corollary 2.1: Given problem (1)–(6), on the optimal solu-
tion of the problem, singular setup regimes iii) can be replaced
with either regime i) or regime ii) followed by no-setup regime:

iv) , when .
Lemma 2 and its corollary show that although the setup

process is continuously controllable in our model, there always
exists an optimal solution where the setup rates take on only
their boundary values. The following lemma finally formalizes
the conditions when a machine can be set up, i.e., the lemma
determines a point of time and a new machine state when and
where the machine can be changed over.

Lemma 3 (The Necessary Setup Conditions):On the optimal
solution, if a machine is being set up from stateonto state
on interval , then

(12)

Thus, the optimal scheduling trajectory consists of a sequence
of setup and production regimes, which are changed over only
at moments satisfying (12).

Example (Continued):The necessary condition for a setup
from state onto state of blender in our
coffee example is:

where . With respect to the product characteristics shown
in Table III, the dual differential equations for determining, for
example, are

if

and

if

The analytical properties proven in the above lemmas and
illustrated in the example allow shooting-based numerical
methods to be constructed for solving the primal and dual
systems (1), (2), (8), and (9) as a two-point boundary value
problem. However, such methods have proved to be efficient
only for small-scale production systems [17]. In fact, for
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TABLE III
SETUP TIMES (DAYS)

scheduling problems with dynamic demands, solving the
corresponding two-point boundary-value problem becomes
strongly exponential in the number of control variables even
for short planning horizons.

When no irregular constraint is imposed on the system, the
problem of dimensionality can be overcome by applying an al-
ternative time–decomposition approach, which is of polynomial
complexity when solution accuracy is given. Since the general
problem does contain irregular constraints (5), we next decom-
pose the general problem into three subproblems which, when
subsequently solved, yield the optimal solution for pressing de-
mands.

IV. SEPARATE OPTIMIZATION OF PRODUCTION AND SETUP

PROCESSES OF THEGENERAL PROBLEM

To solve the general problem, we first assume that the
machines making up the system are fully loaded and then find
the optimal sequence of machine changeovers (sequencing
problem). Secondly, we relax the full loading requirement and
find optimal loading and timing of the machines for the given
setup sequence (loading and timing problems). Eventually, we
prove that, under pressing demand, the solution of the resultant
problems coincides with the solution of the general one.

Sequencing Problem:This problem deals with setup
scheduling by varying setup rates under the full loading of
the machines in the system (i.e., constraint (5) takes the form
of equality: . Thus, the system is
controlled by only setup rates and the problem is
formulated as follows:

subject to

Loading Problem: This problem deals with the optimization
of the production process by varying machine rates under a

given sequence of setups [functions ]. The problem for-
mulation follows:

subject to

Timing Problem: This problem deals with finding moments
of time (setup starts) which satisfy the necessary setup condi-
tions (12) (see Lemma 3) for a given set of dual variables

The suggested decomposition leads to the problems which are
computationally tractable for large-scale systems. Indeed, the
general problem includes irregular mixed constraints (5) im-
posed on both state and control variables. These
constraints prevent an efficient utilization of the time–decompo-
sition methods. At the same time, mixed constraints do not ap-
pear in any of the three problems. Below, in Lemma 5, we also
eliminate the state constraints from the sequencing problem in
order to further extend the scope of practical applications.

Prior to proving that the solution of the decomposed problems
is the optimal solution for the general problem, we formalize the
requirement of pressing demand.

Definition: Demand is pressing if the solution of the general
and sequencing problems defines the same setup sequence and
durations.

Although our definition of pressing demand is based on the
time–decomposition solution methodology, it implies a gener-
alization of the well-known case when the production system
is overloaded, i.e., when the demand is close to or exceeds the
system's capacity along the planning horizon. Ana priori con-
dition sufficient for the demand to be pressing, which takes into
account not only the machine capacities but also the cost rela-
tionships, technology (bill of materials), and initial buffer levels
are given by the following lemma.
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Lemma 4: For the demand to be pressing, it is sufficient that

(13)

where

To formulate the next theorem, we introduce the following
notation:

and —solution of
the sequencing problem;

and —solution of the
loading problem;

—solution of both
loading and timing problems as described above in this
section.

Since the iterations of the loading problem do not change the
setup sequence, the functions are common for both se-
quencing and loading problem solutions. At the same time, the
iterations of the timing problem do change the location of setups
and loading of the machines. Therefore, an additional asterisk
appears in the solution functions.

Theorem 1: Given pressing demand and the optimal solution
for the sequencing problem , and

if ( and ) is the optimal
solution for the loading problem and (
and ) is the solution of both loading and timing prob-
lems, then and is the solution
of the general problem.

Proof: If demand is pressing, it is sufficient to show that
the solution satisfies
Lemmas 1 and 3, Corollary 1.1, and all of the constraints of the
general problem.

Lemma 1 and its corollary are valid because the respective
(production rate) term of the Hamiltonian and the dual equa-
tion of the loading problem coincide with the Hamiltonian (10)
and (8), respectively. Lemma 3 is satisfied because the solu-
tion and meets the necessary
setup conditions formulated explicitly in the timing problem.

With respect to the formulations of the sequencing and
loading problems, one can easily observe that the primal
variables satisfy all of
the constraints of the general problem. Q.E.D.

Although the proven theorem provides an efficient frame-
work in the search for the optimal solution of the general
problem, presence of the state constraints in the sequencing
problem reduces still further the applicability of the approach

Fig. 2. Step-function�(V � 1) and its approximation functionsf (V ).

for large-scale systems. Therefore, we will relax the state
constraints and obtain both upper and lower estimates of the
optimal solution. To formulate the relaxation, we denote by

a sequence of functions which converges to
when and tends to the minus infinite-valued function
when for (see Fig. 2). The choice of such
functions is twofold: to approximate the discontinuity of the
unit step-function and to penalize the violation of
the state constraint .

Example (Continued):For the coffee example, the following
approximating functions are selected as:

if

if

and are depicted in Fig. 2.
Lemma 5–The Lower Bound Lemma:If the constraint (5) of

the general problem is relaxed as

(14)

then the solution of the relaxed general problem is the lower
bound of the general problem for each.

Note, that the solution of the relaxed general problem (see
Lemma 5) is not necessarily feasible for the general problem,
but, when demand is pressing, it provides a close (lower) esti-
mation for the optimal value of the objective function. Indeed,
negative production rates (14) waste time and capacity on pro-
duction unspecified by bills of materials. Recalling our coffee
example, negative production rate of a packager would mean
that it unpacks a brand and pumps it back to the buffer for the
corresponding mixtures. This clearly cannot occur frequently
when demands for brands are pressing.
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Remark 1: Following the framework of Theorem 1, a fea-
sible near-optimal solution for the general problem can be ob-
tained by, first, relaxation of the equation of the production
process in the sequencing problem

and exclusion of the state constraint . Second, the
sequencing problem is solved by a time–decomposition method
for optimal control problems with only control constraints. Due
to the special form of function , only an insignificant vio-
lation of the state constraint can occur. Therefore, then the solu-
tion is approximated in a natural way to meet the excluded state
constraint. Namely, on the no-setup regimes of machine, a

which is close to one is set to one while the others
are set to zero. On the setup regimes, the solution is left without
change. Eventually, the near-optimal solution can be found by
Theorem 1. Indeed, if the solution satisfying both loading and
timing problems exists, then the obtained solution is the optimal
one according to Theorem 1. Otherwise, the timing problem can
be used as an heuristic to bring the solution nearer to the optimal
one.

Lemma 6: Let and be the solution of
the loading problem for a given setup sequence and

then there exists a small variationof so that the solution for
the varied loading problem improves.

Thus, Remark 1, Lemmas 5 and 6 define the way for esti-
mating the optimal solution of the general problem. Namely,
while Lemma 5 provides the lower bound for the optimal so-
lution, Lemma 6 specifies the upper estimate by allowing itera-
tive improvements of admissible solutions. These results will be
elaborated upon in the next section on the basis of the time–de-
composition methodology.

V. A TIME-DECOMPOSITIONNUMERICAL METHOD

The time–decomposition method is based on decomposition
of an infinite-dimensional optimization problem into finite-di-
mensional problems of maximizing the Hamiltonian, formu-
lated at each point of time. The time–decomposition method is
of an iterative nature. On each iteration of the time–decomposi-
tion method, the only condition of the maximum principle that
is not satisfied is that the control functions do not maximize the
Hamiltonian everywhere on the planning horizon. Iterations of
the methods will ensure that a measure of this discrepancy from
the maximum principle is minimized. Thus, the central point of
the time–decomposition method is the numerical construction
of a descent variation of control.

Time–decomposition methods have proved their efficiency
for solving complex optimal control problems with regular
mixed constraints [21], [22]. However, the mixed constraint (5)
is not regular and, therefore, the straightforward time–decom-
position is not applicable to the original problem.

In manufacturing, numerical methods based on time–de-
composition were successfully applied to scheduling large
FMS with negligible setup times [14], [23]. In what follows
we present two time–decomposition algorithms for both
near-optimal solutions and lower bound estimates.

A. An Algorithm for Near-Optimal Solution

In order to extend the time–decomposition approach to
scheduling with significant sequence-dependent setup times,
an iterative method outlined in Theorem 1 is suggested. The
method presented here is based on the projected gradient
approach which ensures monotone decrease of the objective
function on consecutive iterations. In what follows, Steps 1–7
of the algorithm are intended to solve the sequencing problem
with regular constraints (see Remark 1); Steps 8–13 are for
solving the loading problem; and Step 14 is for the timing
problem according to Lemma 6.

Step 1: Choose a feasible solution of the sequencing problem
, (for example ).

Step 2: Integrate the system of dual equations
and

with the right-hand boundary conditions and
.

Step 3: At every point of time, calculate the direction of de-
scent (see proof of Lemma 2). When

, assign ,
if then

.
Step 4: Determine control variation as

a step along the calculated direction, .
Step 5: Integrate the primal equation

with the left-hand boundary condition .
Step 6: Integrate the primal equation

with the left-hand boundary condition and cal-
culate the value of the resultant objective function (6). If the
objective function is not decreased, then decreaseand go to
Step 4; otherwise assign and go
to Step 7.

Step 7: Check a stop condition. For example, if
cannot be described by a combination of regimes (i), (ii), and
(iv) (see Lemmas 2 and its corollary) with a given accuracy
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TABLE IV
CHANGE IN OBJECTIVE FORDIFFERENTSTEP-FUNCTION APPROXIMATIONS

then go to Step 2; otherwise approximate (see Remark 1)
and go to Step 8.

Step 8: Choose a feasible solution of the loading problem
for the found setup sequence

(for example ).
Step 9: Integrate the dual equation

with the right-hand boundary
condition .

Step 10: At every point of time for which with a
given accuracy, calculate the direction of descent

When , assign ; when
then .

Step 11: Determine control variation as
a step along the calculated direction, .

Step 12: Integrate the primal equation

with the left-hand boundary condition and calcu-
late the value of the resultant objective function (6). If the objec-
tive function is not decreased, then decrease, otherwise assign

and go to Step 13. If is greater
than a given number then go to Step 11; otherwise decrease
and go to Step 8.

Step 13: Check a stop condition. For example, if
cannot be described by a combination of regimes i)–iii) (see
Lemma 1 and its corollary) with a given accuracy, then go to
Step 9; otherwise go to Step 14.

Step 14: If all of the setups satisfy the necessary setup condi-
tions (see Lemma 3) with a given accuracy, then exit; otherwise,
shift each of the setups which do not satisfy these conditions on
a step in the directions defined as follows:

if

then assign

otherwise

Go to Step 8.

B. A Lower Bound Algorithm

According to Lemma 5, the relaxed general problem contains
no irregularity and therefore can be efficiently solved by the

time–decomposition method where both production and setup
processes are integrated simultaneously.

Step 1: Choose a feasible solution of the relaxed general
problem , [for ex-
ample ].

Step 2: Integrate the system of dual equations
and

if and ; otherwise with the
right-hand boundary conditions and .

Step 3: At every point of time, calculate the direction of setup
rate descent . When

, assign ; when
then .

Step 4: At every moment of time calculate the direction of
production rate descent

When then ; if
then .

Step 5: Determine control variation as
a step along the calculated direction, .

Step 6: Determine control variation as a
step along the calculated direction, .

Step 7: Integrate the primal equations

and

with left-hand boundary conditions
and calculate the value of the resultant objective function (6). If
the objective function is not decreased, then decreaseand go
to Step 5; otherwise assign and

.
Step 8: Check a stop condition, i.e.,

is less than a given tolerance then stop; otherwise
go to Step 2.
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Fig. 3. Near-optimal solution for blenders.

VI. NUMERICAL EXAMPLE AND COMPUTATIONAL RESULTS

This section presents a solution of the coffee example and
summarizes computational experiments conducted for different
scale manufacturing systems.

A. Application of the Method to the Coffee Production Cell

To analyze the convergence of the solution, the unit step func-
tion was approached by the sequence of approximating func-
tions (see Fig. 2) with parameterrunning from 10 up to 25.

The lower estimate of the objective function found by the
lower bound algorithm for 3.2 min at IBM PC-486-66 MHz is

cost units, while the upper estimate provided by the
near-optimal solution algorithm for 4.3 min is cost
units for . Table IV shows change in the objective of
the near-optimal solution, which converges to the upper bound
estimate, as goes to 25.

The near-optimal solution is depicted in Figs. 3
and 4 for all stages of the production process. Fig. 5 shows the
demand profile and buffer behavior for the end products over
the planning horizon.

B. Statistical Results

The scheduling program, realizing the developed algorithms,
is written in C++, and is provided with a user-friendly inter-
face, which is a Visual Basic project running in a Windows en-
vironment. This software has been utilized for scheduling of
the avionic harness manufacturing system at Sikorsky Aircraft
Corporation; 3-axis Monarch vertical machining centers at a
department of Remington Arms Co.; textiles and forming ma-
chine centers in rigid panel manufacturing at Albany Interna-
tional HPM; final assembly at Spectra Inc.; high demand bottle-
neck machines in surface mount technology at Sanders, a Lock-
heed Martin Co.; six volt battery assembly for the Polaroid film
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Fig. 4. Near-optimal solution for packagers.

pack at Polaroid Corp.; and heat exchanger manufacturing at
Hamilton Standard.

In the experiments, the scheduling problems were solved by
both the lower bound and near-optimal solution algorithms. The
problems were categorized by the cumulative number of ma-
chine states , i.e., the sum of states for all
the machines. Ten problems with different production condi-
tions (bills of materials, demand profiles, penalty coefficients,
and so on) were solved for every category. The averaged results
are presented in Fig. 6 as the difference between the upper and
lower estimates related to the lower-bound objective function
value, . Three curves in Fig. 6 illustrate the influence of ma-
chine flexibility [ from 2–4] on the gap between both esti-
mates. Although this optimality gap slowly grows with increase
of machine flexibility, it meets practical requirements for the
wide range of manufacturing systems. The averaged computa-
tion time for both algorithms is shown in Fig. 7.

VII. CONCLUSIONS

A new time–decomposition approach to scheduling sizable
manufacturing systems with flexible machines and sequence-
dependent setup times is suggested in this paper. The approach
utilizes both the analytical properties of the optimal solution de-
rived from the maximum principle and the numerical time–de-
composition methodology. The theorem proves under condi-
tions of pressing demand that the general problem can be solved
to optimality by decomposing it into a number of specially con-
structed subproblems. At the same time, the proposed relaxation
of the general problem significantly simplifies numerical proce-
dures for the approach, while allowing quite accurate lower and

upper estimates of the optimal solution. As a result, an effec-
tive algorithm for near-optimal scheduling in realistic produc-
tion environment is developed. Computational tractability of the
approach, observed in the conducted numerical experiments, of-
fers the possibility of successful applications for modern flex-
ible manufacturing systems.

APPENDIX

Proof of Lemma 1:The maximum principle claims that the
optimal control strategy is achieved by maximizing, for each,
the Hamiltonian on the set of admissible controls. Since control
variables and appear in distinct terms of the
Hamiltonian (10) and since, moreover, there is no constraint
which joins both controls, the maximization with respect to

and can be carried out separately. Let us consider
the respective (production rate) term of the Hamiltonian

(A1)

Because this term and constraint (5) are linear with respect to
, the maximum is reached in one of three cases stated in

the lemma. Q.E.D.
Proof of Corollary 1.1: Let us differentiate twice the condi-

tion of regime ii). We then obtain



KHMELNITSKY et al.: TIME–DECOMPOSITION METHOD 649

Fig. 5. Buffers behavior and demand profiles for the end products.

Replacing with the production process (1) and denoting

and

by and respectively, we immediately obtain
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Fig. 6. Optimality gap between lower and upper estimates.

Fig. 7. Computation time for the lower bound and near-optimal solution
algorithms.

If

is out of range [0, 1], then regime ii) cannot exist for optimal
behavior of machine , because constraints (4) and (5) are not
satisfied. Q.E.D.

Proof of Lemma 2:According to the maximum principle, we
now maximize the respective (setup rate) term of the Hamil-
tonian

(A2)

on the set of admissible controls (4).
The proof immediately follows from the fact that this term

and constraint (4) are linear with respect to . Q.E.D.
Proof of Corollary 2.1: Let a singular setup regime from

state onto state exist on a time interval of the op-
timal solution, i.e.,

when , and
. Then from constraint (4) it follows

that we can replace this regime with regime i) on the interval
and with no-setup regime on the remaining

interval . One can observe that the objective
function (6) does not change and no constraint is violated.
Indeed, the objective depends only on buffer levels, and in both
setup cases no product is produced on machineduring the
interval which influences the buffer levels.

Likewise, a singular setup regime from stateonto can be
replaced with regime ii) on the interval and with
no-setup regime on the remaining interval .

Q.E.D.
Proof of Lemma 3:If setup is carried out on regime i) (see

Lemma 2), then it is characterized by the setup time
and by the difference between the corresponding dual variables

, which are identical before and after the
setup (see no-setup regime iv) in Corollary 2.1).

Thus, the necessary conditions of setting up from stateto
state on the time interval , where is an un-
known moment of the setup initiation, are

and

(A3)

During this setup
[see (2) and (4)], and therefore (9) takes the form

(A4)

(A5)

Since and do not equal zero during the setup,
the complementary slackness condition (11) causes the measure
functions and to equal zero and not to enter the
dual equations. From (A3)–(A5) it immediately follows that

When tends to infinity, we obtain the limit form of the nec-
essary setup conditions

(A6)

Likewise, if the setup is carried out on regime iii) (see
Lemma 2), i.e., , then the necessary setup conditions
take the form

(A7)

Q.E.D.
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Proof of Lemma 4:One can easily observe that if the op-
timal production rate for the general problem takes the maximal
value along the planning horizon [see Lemma 1, regime i)], then
the general and the sequencing problems become equivalent.
Specifically, the optimal setup sequences and durations coin-
cide for both problems (i.e., demand is pressing). What is left to
show is that (13) is sufficient for regime i) to occupy the entire
planning horizon. Indeed, let the condition of regime

be satisfied for every state of every machine. Then, from (8) it
follows that

Consequently, taking into account (1), we immediately obtain

Since is always maximal, the last inequality will not be
violated if:

Clearly, rearranging the terms of the inequality, we obtain

Substituting the defined values of and penalty coefficients
into the last inequality, we conclude with (13). Q.E.D.

Proof of Lemma 5:The proof immediately follows from the
fact that the set of admissible controls for the relaxed problem
includes that for the general problem. Q.E.D.

Proof of Lemma 6:Let us consider the case when

(A8)

Then, assign and find the optimal solu-
tion for the varied loading
problem. Consider the variation of the objective

To define the sign of this variation, we replace with
varied production process (1):

Next, changing the order of integration and taking into account
(8) we obtain

(A9)

From condition (A8) and Lemma 1 it immediately follows that
the variation of the objective (A9) is negative, i.e., the solution
of the varied loading problem improves.

Similarly, the improvement of the solution can be proved for
the case when

and variation is chosen negative. Q.E.D.
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