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Abstract This paper investigates the problem of allocating multiple defensive resources to
protect multiple sites against possible attacks by an adversary. The effectiveness of the re-
sources in reducing potential damage to the sites is assumed to vary across the resources
and across the sites and their availability is constrained. The problem is formulated as a
two-person zero-sum game with piecewise linear utility functions and polyhedral action
sets. Linearization of the utility functions is applied in order to reduce the computation of
the game’s Nash equilibria to the solution of a pair of linear programs (LPs). The reduction
facilitates revelation of structure of Nash equilibrium allocations, in particular, of mono-
tonicity properties of these allocations with respect to the amounts of available resources.
Finally, allocation problems in non-competitive settings are examined (i.e., situations where
the attacker chooses its targets independently of actions taken by the defender) and the struc-
ture of solutions in such settings is compared to that of Nash equilibria.
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1 Introduction

The problem of allocating multiple scarce resources to optimize an objective function, in
particular a linear one, is one of the classic problems in Operations Research. These prob-
lems can be traced back to the foundation of linear programming (LP); for example, early
work of Dantzig, Hitchcock, Kantorovich and Koopmans among others (see Cottle et al.
2007). The surveys of Luss (1999) and Katoh and Ibaraki (1998), the recent textbook of
Luss (2012) and references therein provide a perspective on the extensive study of this prob-
lem.

In most of the work to date on allocating resources a decision maker seeks to maximize a
single objective function. In contrast, the current paper considers a zero-sum game theoretic
variant of the problem where some parameters of an agent’s utility function are determined
by an adversary who attempts, in turn, to minimize the utility of the first agent. Here, two
parties select their actions simultaneously. Each party takes into account the potential effect
of the actions of the other party. The motivation for the problem we study is a scenario where
a defender has to allocate scarce resources of limited capacity to reduce the vulnerability of n
sites. The resources are operationally substitutable but their (possibly varying) effectiveness
levels are not uniform. An attacker decides whether to attack, and chooses a randomized
strategy that assigns probabilities for attacking each site.

In competitive environments, when outcomes depend on actions of multiple interested
parties, Nash equilibria are considered as reasonable outcomes, and their determination re-
places the computation of “optimal solutions” in non-competitive environments. Resource
allocation in adversarial settings has been studied in the context of the military opera-
tions research and conflict economics; see for example Blackett (1954), Roberson (2006),
and Franke and Oztiirk (2009). The current paper addresses an attacker-defender setting
similar to that considered by Golany et al. (2009) where the defender has to satisfy hard
budgetary constraints. Here, the analysis is extended to a more general setting with multiple
resources. Also, additional structural properties of Nash equilibria are revealed. Differences
in the solution structure of similar allocation problems in competitive environments vs. non-
competitive environments have already been explored for the case of a single resource; see
for example Bier et al. (2008), Golany et al. (2009), Powell (2007). Note that the explicit
computation of Nash equilibria is generally a challenging task, and even more so when one
seeks all Nash equilibria (see for example the commonly cited paper of Papadimitriou 2001).
Using linearization and a classical result for polyhedral games (Wolfe 1956) we efficiently
reduce the computation of Nash equilibria of our game to the solution of a pair of LPs.

In practice, the attacker and defender may confront each other over multiple time periods.
In this paper we model a static game that may also correspond to a stage game in a mul-
tistage dynamic game. Note that when played over multiple time periods this game would
not fit within the well-studied repeated game setting. This is due to the payoffs and action
sets that may change from one stage to another (for example since the budgets and existing
defenses may change over time). Nevertheless, a main contribution of this paper has impli-
cations for practical multistage applications, as well as for multistage modeling extensions;
it includes the investigation of monotonicity properties of the allocated resource amounts in
the budget of the defender. Monotonicity is a desirable property implying that the defender
will not have to shift existing defenses from one site to another at a later stage in order to
be in a Nash equilibrium. Specifically, we show that the Nash-equilibrium allocations in-
crease in amount of a single available resource. On the other hand, with two resources, a
simple example illustrates that the allocations are non-monotone in the amounts of available
resources. Nevertheless, a surprising weak form of monotonicity is proven in general (with
arbitrarily many resources).
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In the next section we introduce the notation and model of the game. Then, some prop-
erties of optimal solutions of non-competitive resource allocation problems are examined to
serve as a benchmark for comparison with the game setting. We continue to explore struc-
ture of Nash equilibria, which then lends itself to prove the main result about monotonicity
of Nash equilibrium allocations.

2 The model

The set of reals, positive reals and nonnegative reals are denoted R, R, and Rg, respectively.
Finally, for z € R, let z, = max{z, 0}.

We consider a resource allocation game with two players referred to as defender and
attacker and denoted X and W, respectively. The defender X has a limited amounts of m
resources indexed by j € M = {1, ..., m} with the available amount of resource j being
C; > 0. The defender may allocate its resources to the defense of n sites indexed by i € N =
{1, ..., n}. The set of actions available to defender is then represented by

w={rerye

> X =G foralljeM} (1

ieN
(the inequalities constraining the defender’s use of resources do not require resource-
depletion). The feasible actions for the attacker W are probability vectors from

Zw,-sl}; (©)

W= {w e Ry
ieN

for w € W, w; the probability of attacking site i € N, and 1 — ) _,_,, w; corresponds to the
probability of not attacking at all. It is important to note that the attacker does not observe
the defender’s decisions before making its own decisions, i.e., the attacker is not optimizing
its actions with respect to known defenses. Similarly, the defender is not optimizing with
respect to a given attack or any fixed randomized strategy. Rather, both sides participate in
a game where decisions are made simultaneously.

The utility functions of W and X are expressed in terms of a vector b € R and a matrix
a € Rg™". Here, b; > 0 is the expected cost of damage to site i € N if attacked while no
resources are allocated to its protection, and a;; > 0 is the reduction in the expected cost of
damage to site i € N, per unit investment of resource j € M; see Golany et al. (2009) for
further details when m = 1. The utility function of the attacker and the defender are then
given by functions uy : X X W — Rand uy : X x W — R with

uW(x,w)=Zw,- (bi —Za,-jx,«j> and wuyx(x,w)=—uwy(x,w). 3)
ieN jeM +
Due to the (-),, these functions are not linear in x, i.e., the defender’s actions; here (-), is
used to reflect the assumption that there is no value in overprotecting a site.

Tables 1 and 2 summarize the data of the problem and the decision variables of the two
players.

We say that (x*, w*) € X x W is a Nash equilibrium if x* is the defender’s best response
to w* and w* is the attacker’s best response to x*, i.e.,

ux(x*, w*) = Ixnsa)?ux(x, w*) and uW(x*, w*) = wms% uw(x*, w). “4)
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Table 1 The data of the problem

Resource Damage reduction rates Resource availability
Site
1 2 . n
ar ap - an Ci

2 as) ay .o az, G

m am1 am?2 cee Amn Cm

Initial damage
by by . by

Table 2 Decision variables of the defender X and of the attacker W

Resource Allocations of X

Site

1 2 ... n

X11 X12 cee X1n
2 x21 x22 e X2n
m Xm1 Xm2 e Xmn

Attack probabilities of W

w] wy wp

Without loss of generality, it will be assumed throughout that
bizby=--->b,>0; (5)

further, to avoid discussing degenerate situations, it will be assumed that the inequalities
in (5) are strict. In the next section, we consider multiple resource allocation in a non-
competitive setting in order to facilitate a comparison with the game setting.

3 Non-competitive settings

In this section it is assumed that the n sites are to be secured from a probabilistic threat
(e.g., of a natural disaster) using m resources. Let ¥ € R" be a (fixed) probability vector
where 7; is the probability that target i is exposed to the threat. The data of the problem,
as in the game setting, includes for each i € N an expected cost if a site is exposed to the
threat b; > 0 and for each resource j € M an effectiveness a;; > 0. If x = (x;;) is allocated,
then the damage to site i if exposed to the threatis (b; — ) jem Gi ;Xij)+- Given the available
resource amounts C € R}, to be allocated to the defense of the sites, a decision maker faces
the problem

é(n)=§éi)r(l{zm<bi_Zaijxij>+}’ ©)

ieN jeM
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where X is defined by (1). We now consider the linearized optimization problem:

0’(n):min2m<b[ —Za,‘jx,'j) (73)

ieN JjeM

subject to ZXU <C; JEM (7b)
ieN
Za,-jx,j < b[ ieN (70)
jeM
x >0. (7d)

The next result relates optimal solutions of (6) and optimal solutions of (7a)—(7d). Its proof
is given in Appendix B.

Proposition 1

(@) (m)=0'(n).
(b) A feasible solution of (Ta)—(7d) is optimal for (Ta)—(7d) if and only if it is optimal for (6).

The next proposition bounds the number of targets that are partially protected in op-
timal solutions of (7a)—(7d). The proof is given in Appendix C. For x € X let L(x) =
{l eN | ZjeMaijx,-j = 0}, U(X) = {l eN | ZjeMa,-jx,-j = b,} and V()C) = {l eN | 0<
> jem @ijXij < bi}.

Proposition 2 There exists an optimal solution x' of (Ta)—(7d) such that v(x") < m.

The result of Proposition 2 is used for comparison with the structure of Nash equilibria
that is studied in the next section.

4 Characterization, computation and structure of Nash equilibria (through
linearization)

This section shows how Nash equilibria of the original game, defined by (1)-(3), can be
computed through the use of Linear Programming (LP). For this purpose we consider the
game where the utility functions are modified by dropping the symbol (-)1 in (3); we denote
the new utility function iiy and i1y, respectively, and refer to them as the linearized utility
functions. Specifically, for (x,w) € X x W,

ﬁw(x, LU) = Zwi (b, — Za,-jx,-j> and ﬁx(x, U)) = —Zw,- <b, — Zaijx,vj);

ieN JEM ieN JjeEM
®)

We refer to the the linearized game as the game with the new utility functions. Elementary
facts about Nash equilibria of the original and linearized game are summarized in the next
proposition.

The following proposition records standard results that follow from wuw (x, w) and
iw (x, w) being concave and continuous in x and linear in w and X and W being com-
pact and convex, see Berkovitz (2002, p. 117).

@ Springer



Ann Oper Res

Proposition 3

(@) V =min,ecx maxyew Uy (X, W) = MaXyey Milyey ty (X, w).
(b) (x*, w*) is a Nash equilibrium of the original game if and only if

x*e argmin[maxuw(x, w)] and w* e argmax[minuw(x, w)]. )
XeX wew wew Lxex

©) Y:he original game has a Nash equilibrium.

(@) V =mincex Maxyew dy (¥, w) = mMaxyeyy Minyex dw(x, w).

") (x*, w*) is a Nash equilibrium of the linearized game if and only if

x* € argmin [maxﬁw(x, w)] and w* e argmax[minﬁw(x, w)]. (10)
xex wew wewy Lxex

(¢") The linearized game has a Nash equilibrium.

Part (b) of Proposition 3 demonstrates that (x*, w*) is a Nash equilibrium of the original
game if and only if x* and w* satisfy, respectively, the two independent conditions of (9).
Hence, we refer to equilibrium allocations of the attacker and of the defender as independent
properties characterized by the corresponding condition in (9). Part (b") establishes the same
conclusions for the linearized game.

Henceforth, let V and V be the values of the original and linearized game, respectively,
as defined in Proposition 3. The next result links Nash equilibria of the original and the
linearized games. The proof is given in Appendix D.

Proposition 4

(a) Every Nash equilibrium (x*, w*) of the linearized game, is a Nash equilibrium of the
original game.

(b) V=V=>0.

(c) If V > 0, then the set of Nash equilibria of the original game and the linearized game
coincide.

The next example demonstrates that the condition V > 0 cannot be dropped from Propo-
sition 4(b).

Example 1 Consider a single site and a single resource, with b; =a;; = 1 and C; =2. Then
V=V =0and (x{; =1, wj =1) is a Nash equilibrium for the original game. But, it is not
a Nash equilibrium for the linearized game as ity (2, 1) = —1 < uw(1, 1). Still, the (unique)
Nash equilibrium (1, 0) of the linearized game is a Nash equilibrium of the original game.

The next result characterizes Nash equilibria of the linearized game and shows that its
equilibria can be determined by solving two LPs. The LPs of interest are

0* = min6 (11a)
st. 0+ ayx;>b, i€N, (11b)
jeM
Y xij=Ci jeM, (11c)
ieN
0,x;; >0, ieN,jeM (11d)

and its dual:
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maXZb,‘w,‘—Zijj (1221)

ieN jeM

st Y wi <1 (12b)
ieN
ajjw; <&;, i€N,jeM, (12¢)
w, >0, ieN,jeM. (12d)

We note that (x,0) = (0, b;) is feasible for the LP (11a)—(11d) whose objective function
is bounded below by 0. Hence, this LP and its dual (12a)-(12d) always have an optimal
solution. The proof of the next proposition is given in Appendix E.

Proposition 5

(a) (x*, w*) is a Nash equilibrium of the linearized game if and only if

x* e argmln{uqleawx[zwi (bi - Zaijxij> ”

rex i=1 jeM

:arxgergln{rlrg}vx{<b, — Za,-jx,j>+” (13)

JjeM
and

w* € argmax{ min
wew rYex

Zw,-(b,-—Za,-jx,-j>”. (14)

ieN JjeM

(b) x* satisfies (13) if and only if (x*, 0%) is optimal for (11a)—(11d) for some 6* € R, w*
satisfies (14) if and only if (w*, &%) is optimal for (12a)—(12d) for some &* € R™, and
the common optimal objective values of LPs (11a)—(11d) and (12a)—(12d) equals V.

(c) There exists x* in X that satisfies (13) and b; — ZjeM a,-jx;‘j >0foralli e N.

Proposition 5 demonstrates that finding Nash equilibria for the linearized game reduces to
solving LPs (11a)—(11d) and (12a)—(12d). By Proposition 4(a), resulting solutions are Nash
equilibria of the original game. Proposition 4(b) further demonstrates that if the optimal
objective values of the LP’s are positive, Nash equilibria of the original game are given by
optimal solutions of the LPs (11a)—(11d) and (12a)—(12d).

Suppose (x*, 8*) is optimal for (11a)—(11d). Then V=6 Further, if 6* > 0, then x*
is an equilibrium allocation for X under both the linearized and the original models and
solutions of LP (12a)—(12d) yield equilibrium allocations for W. Alternatively, if 6* = 0,
then (w*, £*) = (0, 0) solves LP (12a)—(12d) and w* = 0 is an equilibrium allocation for
W under the linearized model. In this case, there are solutions x to (11b)—(11d) with § =0
and each such x is an equilibrium allocation for X in the linearized game and therefore in
the original game; in particular, there are such solutions x where the inequalities in (11b)
hold as equalities, representing allocations where no site is over-protected. As for W, when
0* =0, any w* € W is an equilibrium allocation for W under the original model.

For x € Ry, let

I(x)zargmax:bi—Za,»_,»x,-j} and P(x)= {ieN‘ inf >0]. (15)
ieN jeM jeM
A set S C N is said to be consecutive if it is one of the n sets: [1],[2],..., N. The next

lemma identifies structure present in optimal solutions of (11a)—(11d). Its proof is included
in Appendix F.
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Lemma 1

(a) For some optimal solution (x*,0*) of (11a)-(11d): I (x*) = P(x*)U{i € N | b; = 0%}
and the sets I (x*) and P(x*) are consecutive.

Further, assuming 6* > 0:

(b) For every optimal solution (x*,0%) of (11a)-(11d): 6* = max;cy{b; — ZjeM a,-jxi*j} and
I(x*)={ieN:b — ZjeMa,-jx;*j =0*}C P(x*)U{i e N|b; =6*}.

(¢) If a > 0, then for every optimal solution (x*,0*) of (11a)—(11d): I (x*) = P(x*) U{i €
N | b; =0*}, I(x*) and P(x*) are consecutive and ), _y xl-*j =Cj foreach j e M.

(d) For some optimal solution (x*,6*) of (11a)—(11d): ZieP(x*)H{j EM | xi*j >0} —1]1<
m — 1, in particular, there are at most m — 1 targets i with |{j € M | xl.*j > 0} > 1.

Lemma 1 implies the following structure of a Nash equilibrium for our model: witha > 0
and an optimal objective value of (11a)—(11d) 6* > 0, the protection level of each target i
is either 6* or b; < 6* with no investment of any resource in the second category of targets;
further, the overlap between the two categories of targets consists of at most a single target.
Also, at most m — 1 of the targets that are allocated some resource get their allocation from
more than a single resource. The proof of part (d) of Lemma 1 (in Appendix F) shows how
an equilibrium allocation x* for the defender that satisfies the conclusion of this part can be
computed.

Further, Lemma 1 shows that for the Nash equilibrium x*, the protection level of each site
i is either b; or a common value 6* (the optimal objective value of (11a)—(11d)). In contrast
to the non-competitive case discussed in Section 3, where an optimal solution x’ of (7a)—
(7d) has at most m partially protected sites. This observation is consistent with conclusions
of Golany et al. (2009) and Canbolat et al. (2012) that in competitive settings one should
distribute the use of resources among many targets whereas in non-competitive settings the
optimal allocation tends to focus the effort on smaller subsets of sites.

5 Allocation-monotonicity for the defender

In this section we study Nash equilibria of the (allocation) game, defined by (1)—(3), under
variations of the resource vector C = (Cy,...,Cy,)T € R. To do so, we parameterize the
characteristics of the problem by the budget vector C; for example, the set X of available
actions for player X will be indexed by C, and referred to as X' (C).

We say that the game exhibits equilibrium-monotonicity for C C R} if for every C, CecC
with C < C and every equilibrium allocation x* for the defender in the games with resource
vector C the defender has an equilibrium allocation X in the games with resource vector C
such that x* < x. We say that the game exhibits strict equilibrium-monotonicity for C if the
above assertion holds for every x (rather then some x). The reference to C will be dropped
when C =R,

Equilibrium-monotonicity is a desirable property as it facilitates planning in stages when
the availability of resources increases over time. In such cases, equilibrium-monotonicity
assures that equilibrium allocations determined when an initial budget is given, remain effi-
cient when more of the resources become available, i.e., budget increases do not result in a
need to reduce allocations made under an initial budget. The next result considers problems
with a single resource, i.e., m = 1. In this case, we assume that all g;’s are positive (for
otherwise allocations to target i is irrelevant) and we drop the index 1 that corresponds to
the single resource.
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Proposition 6 Let m =1 and a > 0. Then the resource allocation game exhibits equilibri-
um-monotonicity and it exhibits strict equilibrium-monotonicity for C =[0, Y, z—’]

Proof 1t follows from Luss (1992) or Golany etal. (2009) that for C € C, a solution to (13) is
uniquely determined as the vector x* with x = (”‘ )4 foreachi € N, where 9 is uniquely

determined by C =), _» & a0)+ Clearly, 0 strlctly increases in C < ), N e L, implying
that the x;" increases in C € C, estabhshlng strict equilibrium-monotonicity for Cec. Next,
for C > Zi eN Z—‘:, the equilibrium allocations are all the vectors x* satisfying ), _y x* <C

and x; > Z—’ in particular, if x* is such a vector and C > C, then x* continues to be an
1

equilibrium allocation under C. Also,ifCec, C ¢C, C< C and x* is an equilibrium
allocation under C, then x;* < Z—’ for each i € N and ) ,_, x < C, then the allocation x

with x; = % for each i € N is an equilibrium allocation under C and satisfies & > x*. O
The following example illustrates lack of equilibrium-monotonicity when m > 2.

Example 2 Suppose N =M ={1,2}, and

“los 02) =) e=o) o e=(2)

The only strategy x* € X(C) of player X that satisfies (13) has x}; = C; and all
other x ’s equal zero; this allocation satisfies by — ijlyza]jxfj =2—-1x1=1=
by — 217]12a2_1x2j and max;=1 2{b; — Y ,_, ,ai;x};} = 1. By Proposition 5, x* is the only
equilibrium allocation of player X. When the available resources are given by C > C,
for every allocation x' € X(C) with xy; = xf, =1, we have that x|, =1, x}, =0,
by =2 i_jpa1jx);=1-=08x),,and by — 3, a2;x5; = 1 — 0.2x,; then

min maxjb; — E ajjxij { =0.68,
xex(C) i=12 h ’
x>x* j=12

is uniquely attained by x’ = ((1):8 (1):‘6‘) But, forx” = ((1)8 gg) 0" = max;—1 2{bi — Y ;_; , 4ijX};}
=0.4 < 0.68; in fact, x” is the unique allocation satisfying (13). Thus, by Proposition 5

there is no Nash equilibrium (X, w) with x > x*.

The next result exhibits a weak form of monotonicity when m > 1 and the availability of
one resource increases without change in the availability of the other resources. We address
solutions of (11a)—(11d)—the translation to equilibrium allocations can then be deduced
from Propositions 5 and 4. In particular, we shall refer to (11a)—(11d) with a vector Ce RE
replacing C as (11) (C).

Theorem 1 Assume that C,C € Rg, and for some q € M, C_‘q > C, while C_’j =C; for
all j #q. Th_en Jfor every optimal solution (x*,6%) for (11a)~(11d), there exists an optimal
solution (x,0) for (11) (C) such that x;q, > xl-*q foralli e N.

Proof We first consider the case where a > 0. Let 6 be the optimal objective value of
(11) (C). As every feasible solution of (11a)—(11£i) is feasible for (11) (C), 6* > 6. Fur-
ther, if 6* = @, then (x*, 6*) is optimal for (11) (C) and the conclusion of our proposition
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holds with (¥, 8) = (x*, #*). Henceforth assume that § < 6* which implies that 6* > 0 and
(by part (c) of Lemma 1) for every vector x for which (x, 8*) is optimal for (11a)—(11d)

Y xj=C; forall jeM. (16)
ieN
We proceed by assuming that 6 > 0. In this case (again, by part (c) of Lemma 1), for every
vector x for which (x, ) is optimal for (11) (C)

Y xj=C; forall jeM. (17)
ieN
We next make two observations:

1) AsPx)CIx*)={ieN:b —0"= ZjeM a,-_,-xl.’_‘i} (by part (c) of Lemma 1), as 0 <
0* and as (%, 6) is feasible for (11b), we have that for each i € P(x*), ZjeM a,«jxi*f =
b —0* <b;—0 < ZjeM a;jx;;j. Consequently, for each i € P(x*), x;» > xl.*j, for some
JEM.

(i) If x;; > x* for (i, j) € N x (M\{q}) then (16) (17) assure that ), Xij = C_'_,» =C;=

ieN xl], consequently, Xirj <X}, i . for some i’ € N.

Let x be a minimizer of [{(i, j) € N x M : x;; # xij}l over the vectors x € R"*" that
are optimal for (11) (C). We will show, by contradiction, that x satisfies the conclusion
of our proposition. So, suppose that x,, < x,;, for some u € N. Then x;, > 0, assuring
that u € P(x*) and (by observation (1)), X,; > x; ’ for some j' € M; as X,q < x;‘q, Jj #q.
Set iy =u, j; =¢q and j, = j'. Recursive use of the above two observations allows one to
construct sequences i; = u, iy, i3,... € N and j; =q, = j', j3,... € M with

0<%, <x;, and X, >x;. >0 forr=12,....

itJr itji41 —
Let £ =max{t =1,2,...| j; ¢ {j1,-.-, ji—1}} (finiteness of m = |M| and j, # g assure
2<{<m)andlet p <€+ 1satisfy j, = joi1.

Let z € R™™ be defined by

[T2) Swi =i and j=j, forse{p,.... 4},

r=p ai"jr+l
Zii = 17l G P L
ij ]_[r:p i L= and j = j,, forr e {p,..., ¢},
0 otherwise,

where the product over the empty set is defined to be 1. This definition assures that
> jem @ijzij =0 foreachi € N and with o = | ——

r=p airerr] ’
2 ww=

{ for j € M\ {jp},
ieN

Zipj, t2igj, =1 —a for j=j,.
‘We consider three cases:

Case I: @ < 1. For 0 < € < min{ Z’”‘ t=p,..., L}, (x* —€z,0%) is feasible for (11a)—
itJjt
(11d) with

D —ex),; =) x, € w;,=Cj—el—a) <Cj,. (18)

ieN ieN ieN

For such €, (x* — €z,60%) is optimal for (11a)—(11d) while x = x* — €z violates (16) for
J = Jjp, a contradiction.
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Casell: a >1.ForO<e<e= min{ljf’:”:—’“‘ it =p,..., L} (note that € is well defined
i1 B
as a > 0 implies that the denominator is nonzero for all elements in this set), (x + €z, 0) is

feasible for (11) (C) with
Z(}E + EZ),']'II = Zx;"jp +e€ Zzijp = éjp + 6(1 - O{) < éjp' (19)
ieN ieN ieN

For such €, (¥ 4+ €z, 0) is optimal for (11) (C) while x = ¥ + ez violates (17) for j=Jp-a
contradiction.

Case III: @ = 1. As in case II, for 0 < € < €(19) holds with its inequality replaced by
equality and (x + €z, 9) is feasible and optimal for (11) (C). From the observation that

= *
Xij — Xij

ézmin{ L, j) € {(i,,m,(il,j,m|r=p,...,z}}

[J
X i
5min{¢ :t:p,...,Z} =€,
|Ziz Jt+1 |
it follows that (¥ + €z, 0) is feasible and optimal for (11) (C). Further, our construction
assures that for each (i, j) € N x M with z;; #0, (x — x*);;z;; < 0 and therefore

- N T,
. .o sgn(Xx;; —xij) if |T| > €,
sgn(xij =X + EZ[j) = .
0 if |

Consequently,

{G. ) eNxM: & +é); #x5}| < |{G. ) eN x M:xi; #x;}
contradicting the selection of x and thereby proving that x satisfies the conclusion of our
proposition.

We next consider the case where 6 = 0 < 6*. We parameterize our analysis by denot-
ing the available amount of resource g by 8 € [Cy, C‘q]; in particular, the suffix (8) will
be added, at convenience, to the characteristics of the problem, e.g., we write C(f) =
(Cryoes Gyt B, Cgry - .., Co), X(B) = X(C(B)), x*(B) € X(C(B)), 0*(B) € R, (11) (B)
etc. As the coefficient-matrix of (11a)—(11d) has full row rank (after surplus/slack variables
are added), the optimal objective value 6*(8) is piecewise linear and continuous in 8 with
an invariant optimal basis for 8 in corresponding intervals; further, 6*(8) is weakly decreas-
ing in B. Let ﬁ =sup{p € [C,, C_’q] | 6*(B) > 0}. Then, continuity of 6*(-) (see for example
Martin 1975) and 6*(C,) = 0 assure that C, < 8 < C, and §*() =0. Fork =1,2, ..., let

B = ,3 - ﬁ—qu ; in particular, x7, = Cy, B is increasing in k and limy_, o, B = B It follows
from the above that for k > 2 there exists optimal solutions (x*(B¢), 0™ (Br)) of (11) (Br)
such that x*(B);, is weakly increasing in k. Let x be any limit point of the sequence
x*(x7), x*(x7,), ... (all x*(Bi)’s are in the compact set X'(B), hence a limit point exists).
Continuity arguments assure that limy_, o, 0*(8¢) = 9*(3) =0=20, and (X, 9*(/§) =0) is
optimal for (11) (/§). Further, from the above result for the case of 6* > 0 it follows that
Kig = x*(x%))iq = x7, for each i € N. As 0*() =0=0*(C) and C(B) =< C, it follows that
(x,0 =0)is optimal for (11) (C). So x satisfies the conclusion of our proposition.

We finally consider the general case where a > 0 (rather than a > 0). As in the previous
paragraph, we use continuity and compactness arguments. For k > 1,2, ..., let a(k);; =
ajj + % Let the problem variables and characteristics now be parameterized by the integer k,

for example let (x (k), 0 (k)) be an optimal solution of (11) (C) and a(k) = (a(k); ;) replacing

’
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a. It follows from the earlier parts of the proof for a > 0 that for k = 1,2, ..., there exist
(x(k), 6(k)) such that x(k)ig = x;*q for each i € N. Evidently, as k increases, feasibility of
(11a)—(11d) becomes tighter and (k) increases in k. Let 6 be the optimal objective value of
(11) (C). As the set X(C) is compact, X (k) € X(C) and 0 (k) € [#(1), 6], for each k > 1, the
sequence (x(k), ] (k)), for k =1,2,..., has a limit point, say (x, 9_), continuity arguments
then show that (¥, ) is optimal for (11) (C) and X;, > x7;, foreachi € N. O

6 Concluding remarks and future research

In this paper we efficiently reduce (making use of a classical result) the computation of Nash
equilibrium of a static defensive resource allocation game with multiple resources, polyhe-
dral action sets, and particular piecewise linear utility functions to the solution of a pair of
LPs. This reduction also allows the revelation of structure of Nash equilibria. Monotonicity
properties that we establish may have implications for policy making if the game is played
over multiple time periods. A lack of monotonicity of two or more resources allocated un-
der a Nash equilibrium when budgets are increased is a negative result with consequences
for decision making. On the other hand, the established weaker form of monotonicity states
that the allocated amounts of resource that becomes more abundant need not decrease for
the defender to be in a Nash equilibrium; it suggests that if there is a choice, one may be
better off by increasing the budget of a resource that is more costly to move from one site to
another. Another implication is that policy makers may need to set aside sufficient funds for
the allocation of resources that are expensive to move at later stages in order to match the
increases in budgets of other resources. It is the subject of future research to formally model
these considerations in a multistage dynamic game.

The monotonicity issues discussed in this paper address only possible changes in the
defender’s budget. In future work, we intend to explore situations in which the attacker has
multiple units of the attack resource (e.g., in cases where the attacking party is composed
of several teams and each team can have its own mixed strategy of attacking multiple sites);
accordingly, W={w e R": 0 <w; <1foreachi € N, ) ,_,, w; = W > 1}. In this context,
one can consider monotonicity with respect to the amount W of attacker’s resource.

While the current paper focuses on zero-sum scenarios in which any gain for one is a
loss to the other, in future work we intend to extend our work to non zero-sum situations
in which each player uses a different set of parameters to evaluate the outcome of the game
(similar to Powell 2007 but with multiple rather than a single resource). The insights we
hope to gain from exploring non zero-sum games involving the allocation of multiple de-
fensive resources should enable us to treat a case where some of the resources serve only
for deception purposes (cf. Levitin and Hausken 2009 which models and analyzes the use
of false targets).

In the current paper, the expected damage resulting from a target being attacked decreases
linearly in the amount of allocated defensive resource up to a point where a target is fully
protected, at that point, the expected damage is constant. The cost of an attack is a specific
convex piecewise linear function of the invested resources. In future research, we intend to
consider more general convex piecewise linear functions. The modeling and the analysis
when such functions are used yields several advantages. First, it may result in closed form
solutions for the attacker’s Nash equilibrium strategies in some special cases; for example,
similar to our case when V = 0. Second, it may help the development of efficient methods
for computing the Nash equilibrium strategies. Finally, even if the problem exhibits nonlin-
ear convex cost functions, such functions can be approximated well by convex piecewise
linear functions.
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Appendix A: A minmax proposition for zero-sum bilinear games

The following records a classic characterization of Nash equilibria for two-person, zero-sum
games with bilinear payoffs and with action sets that are polytopes (see Charnes 1953 and
Wolfe 1956). It is included for the sake of completeness.

Proposition A Suppose X C R" and Y C R" are polytopes and Q € R™*". Consider the
game where X is the set of options to player 1, Y is the set of options to player 11, and upon
selection of x € X and y € Y the payoff of player 11 to player 1is y Qx. Then

(a) There exists a Nash equilibrium and max,cx min,cy y Qx = minyey MaxXyex yT Qx.
(b) (x*, y*) is a Nash equilibrium if and only if

x* € argmax [min yT Qx] (20)
xeX yey
and
y e argmin[max y' Qx]. (21)
yeY xeX

(c) Suppose X ={x e R" | Ax <a}landY ={y € R" | By > b}, where (A, a) € R"*" x R?
and (C, b) € R x RY? (with p and q as positive integers). Then:
(1) x* satisfies (20) if and only if for some A* € R?, (x*, \*) solves the LP
maxb ' A
st. CTA—0x=0
Ax <a
A=>0. (22)
(ii) y* satisfies (21) if and only if for some u* € R?, (y*, u*) solves the LP
minp'a
st.ulA— yTQ =0
By>b
w=>0. (23)
(iii) The LP’s in (22) and (23) are duals of each other and their common optimal ob-

Jjective value equals max,cx minycy vy Ox = minycy MaXyey yT Qx.

Proof Consider the representation of X and Y given in (c). As X and Y are compact, conti-
nuity arguments show that the maxima and minima in (a) are well-defined (and there is no
need to use sup’s and inf’s). Further, standard LP duality shows that for each x € R",

CTA:Qx}

s T B — T)\.
min{y" Qx | By > b} max{b ‘)»20
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and for each y € R™,

MTA:yTQ}

max{y' Qx | Ax <a} :min{uTa 2> 0

proving (c). It further follows that the maxmin and minmax of (a) equal the optimal objective
values of the LP’s in (22) and (23), respectively. As the latter are dual LP’s with finite optimal
objective function, (a) follows. Finally, part (b) now follows from standard arguments. [J

Remark When X and Y are unbounded polyhedra, the maxmin and minmax in part (a)
of Proposition A are supinf and infsup, respectively. Still, if one of these expressions is
finite, then the sup’s and inf’s can be replaced by max’s and min’s, respectively, and the
conclusions and proof of Proposition A hold. The next example has unbounded X and Y for
which Proposition A does not apply.

Example 3 Let

(O N (U R )}

0(}) = x — y, we have that the supinf equals —oo while the infsup equals +oo.

Appendix B: Proof of Proposition 1

Proof (a): Consider x € X(C). If ZjeM ajjxjj < b; for each i € N, then é(rr) <
Doien Tilbi = D iy @ijXij)+ = 3oy Wi(bi — D ;e @ijXij); taking a minimum over x sat-
isfying (7b)—(7d), yields o (;r) < 0*(). Next assume that x is optimal for (6). Let x’ co-
incide with £ except that for each i with b; — 3, ), a;jXi; <0, the %;;’s are reduced so
that b; — ZjeMaijxi’j = 0. It then follows that x’ € X(C) and 0 < b; — ZjeMaijxi’j
(b; — ZjeM a;;%;;)+ for each i € N. In particular, x’ is feasible for (7a)-(7d) and 0(7) =
Dien Tibi = Do ey aijki) e =D ey mi(bi — 30 jep aijxiy) = 07 ().

(b): If x is feasible for (7a)—(7d), then it is (trivially) feasible for (6) and (by feasibility
for (7¢))

Y <b,- - Zaijxij) =) <b" a Zaijxij)

ieN jeM +  ieN jeM

Asé (r) = 60*(1), x is optimal for (6) if and only if it is optimal for (7a)—(7d). O

Appendix C: Proof of Proposition 2

Proof Write LP (7a)—(7d) with equality constraints replacing inequalities by adding non-
negative slack variable z;, for j € M and s;, for i € N, to the corresponding m constraints
of (7b) and the constraints of (7c), respectively. The coefficient matrix has full rank, and
standard results from LP assure that this LP has a basic optimal solution (x', s, z) € R"" x
R" x R™ with at most m + n variables that are strictly positive; in particular, x” is optimal
for (7a)—(7d). Foreach i € L(x") Uv(x") we have s; > 0. Asn = |U (x")| + |L(x")| + |v(x)|,
it follows that
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{G.)eNxM|x];>0}|=> |{jeM|x] >0}
ieN
<metn— |L() Uv ()| =m+ [U ().
Further,asl{jeMIxi’j>0}|z1foreachieU(x/)Uu(x’),itfollowsthat
) +UE) = > HieMix >0l
iev(x")UU (x")
=G )HeNxM|x; >0} <m+|U(x)|.

So, v(x') <m. O

Appendix D: Proof of Proposition 4

Proof Forx e Xlet N_.(x)={i € N | b; — ZjeMa,«jxi_,» <0},and Nog =N\ N_.
(a) and (b): Assume that (x*, w*) is a Nash equilibrium of the linearized game, i.e.,

,ﬂ%ﬁw(x*’w)="A‘W(x*’w*)=¥éi£ﬁw(x’w*)' (24)

It follows from the left-hand side of (24) and the explicit expression for dy (-, ) in (8)
that w} = 0 for each i € N_(x*); consequently, &ty (x*, w*) = uw (x*, w*). As uwy(x, w) >
iw (x, w) for each (x, w) € X x W, we conclude that for each x € X
uw(x*,w*)=ﬁw(x*,w*) Sﬁw(x,w*)guw(x,w*). (25)
Consider any w € W. Define w = w(x*) € R" by
w; ifi € Ng(x*),
0 ifieN_(x*%).

Asuy (" w) =3y wilbi =350y @i X5+ = Y iey Wi(hi — 32 jcpy @ijX]y) = it (X*, W),
the first equality of (24) and uy (x*, w*) = iy (x*, w*) imply that

W; (x*) =

uW(x*,w*):ﬁw(x*,w*)zﬁw(x*,ﬁ)):uw(x*,w). (26)

By (25)-(26), (x*, w*) is a Nash equilibrium of the original game, and V = uy (x*, w*) =
iy (x*, w*) = V. Of course, V > 0as uy > 0.

(c): Assume that V > 0. In view of (a), it suffices to show that a Nash equilibrium
(x*, w*) of the original game is a Nash equilibrium of the linearized game. As > ", _,, wi(b; —
ZjeM aijxf;) = uw (x*, w*) = maxyew uw (x*, w) =V > 0,

p+#{ieN:w>0}c argmax{b,- — Za,»jx;*j}

ieN jeM
:{iENIb,’—Za,’j.}C;}:V}; 27
JjeM
and therefore i1, (x*, w*) = ZieN w;V. Consider w € W. It follows from uw (x*, w*) =
Yoien WiV =Dy wiV =dw (x*, w*), (4), and uw (x*, w) > i (x*, w) that

ﬁw(x*,w*)=uw(x*,w*) zuw(x*,w) Zﬁw(x*,w). (28)
To complete the proof we show that iy (x*, w*) < uw(x, w*) for each x € X. To do

this, we argue that if xj; > 0 and w; > 0, then w/a;; > wia,; for each s € N. This
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inequality is trivial if either w} = 0 or a;; = 0. Alternatively, if w} > 0, a;; > 0 and
wia;; < wjasj, then (27) and V > 0 assure that b, — rnaijMaijxi*j =V >0, and a
shift of a small amount of resource j from x}; to x7; will result in an allocation x” with
s € Ng(x') and uw (x', w*) < uw(x*, w*), contradicting the first equality in (4). So, for
each j, {i € N: w; > 0 and xi*j > 0} C argmax;y{w}a;;}; hence, a standard result about
the knapsack problem (Dantzig 1957) assures that x* € argmax, [,y (wFa;;)x;;]. Con-
sequently,

XeX

x*e argmax: > Z(w,?‘a,;,«)xi_,-}

jEM ieN
= argrnin{ E w (bi - E a,-jxij)} = argminily (x, w*). 0
xeXx . B xeX
ieN jeM

Appendix E: Proof of Proposition 5

Proof (a) and (b): Except for the equality in (13), (a) follows from Proposition 3(b’), after
substituting the explicit expression of . Next, (b) follows from the application of Proposi-
tion A of Appendix A with

—dj bl

—Adim 0
0= - 0 (29)
—dyl bn

0

—ay, 0

(the 0’s in the last column of (29) are, respectively, in R"~2, R, R"*#=2 R"~2 and R),

71 e Zn

: . . eX
X ={zeRrRm! : o and

Lmn—n+1) " Zmn
and z,,,41 =1

(yls Vm+1s -+ ymn—m+1) eWw
Y=1y€l0, 1" yi = yi-1, fori € [nm],
with i(mod m) # 1

Next, the equality in (13) follows from the fact that for each v € R", maxyeyw Y ;e Vi =
max;ey (Vi) 4.

(c): By (a)—(b), there exists X € X satisfying (13). Let x* coincide with x except that for
each i with b; — ZjeM a;;%;; < 0, the X;;’s are reduced so that b; — ZjeM a;jx; = 0. Then
max;ey (b; — ZjeM a;jX;j)+ = max;en (b; — ZjeM a;jx};)+, implying that x* satisfies (13)
andb,«—ZjeMa,»jx;;zOforeachieN. O
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Appendix F: Proof of Lemma 1

Proof (a): Assume that (x/, 6*) is optimal for (11a)-(11d) and u = max{i € N | b; > 6*}
(as (0,0 = b)) is feasible for (11a)—(11d), by > 6* and therefore u is well-defined). By the
feasibility of x’ for (11a)—(11d), b; — ZjeM a,-j-xi’j < 0* for all i € N. Let x* be defined
in the following way: (i) for i < u reduce the x/.’s so that 0* = b; — ZjeM aijxi*j while
maintaining the nonnegativity (this is possible as b; > 6* fori =1,...,u),and (ii) ori > u,
set x/; =0forall j € M. Foreach j € M } ,_yx/s <3, yx/; <Cj,s0, x* € X. Further,
since b; — ZjeM a,-jxi*j =b; < 0* for all i > u (following from the definition of # and (5)),
(x*, 0%) is feasible for (11a)—(11d) and I (x*) = [u]. Also, since (x*, 8*) has objective value
that equals the optimal one, (x*, 6*) is optimal for (11a)—-(11d). Following from (the strict
version of) (5) we have that b, < --- < b, <6* <b, < --- < by and therefore {i € N |
b =0*Ye {{u},0}. Fori=1,...,u — 1, b; > 0" and 6* = b; — ZjeMaijx;kj imply that
xi*j > ( for some j, and therefore i € P(x*). Similarly, if 6* < b,, then u € P(x*) and
{i € N | b; =6*} =. In the remaining case, {u} = {i € N | b; =6*}. Thus, as x;*j =0 for all
i > u, it follows that I (x*) = [u] € P(x*)U{i € N | b; =6*} C [u]. Hence, P(x*) U {i €
N | b; =6%} =[u] = I(x*), in particular, I (x*) is consecutive. We also conclude that if {i €
N :b; =60*} =0, then P(x*) = I(x*) = [u], and alternatively, if {i € N : b; = 0"} = {u},
then P(x*) € {[u], [u — 1]}. So, in either case P (x*) is consecutive.

(b): Feasibility of (x*,0%) for (11a)-(11d) assures that 6* > 0 = max;en{b;, —
> jem @ijx;;}. Further, the inequality must hold as equality—otherwise, as 6* > 0, 0, =
max{f, 0} < 6* and (x*, 6,) would be feasible for (11a)—(11d) with objective value 6, < 6*,
yielding a contradiction to the optimality of (x*, 6*). As 6* = max;en{b;i — Y jem Gi jxl.*j},
(15) implies that I (x*) = argmax;cy{b; — D ey aijxjh ={i € N by — 3y aijxi; =07}
Finally, to see that I* ={i € N : b; — ZjeM aijxi*j =0*} C P(x*)U{i € N |b; =6*}, ob-
serve that if v € I* \ P(x*), then 6* = b, — ZjeM aijx[-*j =b,.

(c): Assume that a > 0 and (x*, 6*) is optimal for (11a)—(11d). We first prove, by con-
tradiction, that P(x*) C I (x*). So, assume that P(x*) \ I (x*) #¥ and k € P(x*) \ 1(x*);
in particular, k ¢ I(x*) and part (b) and feasibility for (11b) assure that h = 6* — [b; —
ZjeM ak_,-x,j}] > (. Also, as k € P(x™*), there must exist some g € M with x,’fq > 0. Let
X € X coincide with x* except that x;, is decreased by € € (0, #) and this quantity is
equally distributed to x}, for i € I(x*). It follows from a > 0 and part (b) that

bl‘— E a,«jx,»j

jeM
bi = X jen QX — iy =07 — i < 0% fori e I(x¥),
= bk—zjeMaij,fj—i—eakq < 9* fori =k,
bi =3 jep @ijxi; <0 fori e N\ (I(x*)U{k}).

So, b; — ZjeM a;;%;; < 6* for each i € N and 6 = (max;cy{bi — ZjeM a;jX;;})+ satisfies
0<6 <6* As (x, é) is feasible for (11a)—(11d) with objective value 6 < 0%, we get a
contradiction to the optimality of (x*, 6%).

By the above paragraph, if i ¢ I(x*), then i ¢ P(x*) and 6* > b; — ZjeM aijxi; = b,
assuring that b; # 0*. Consequently, {i € N : b; =6*} C I (x*). Combining this conclusion
with the above paragraph and part (b), implies that I (x*) = P(x*) U{i € N : b; = 6*}.

We next prove, again by contradiction, that P(x*) is consecutive. Assume that u € N \
P(x*) while (v + 1) € P(x*). As we established that P(x*) C I (x*), (u + 1) € I(x*). By
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(u + 1) € I (x*) combined with part (b), by (u + 1) € P(x*) combined with a > 0, by the
strict version of (5), and by u ¢ P (x*)

0" = bu+l - au+l,jxu+1,j < bu-H < bu = bu - auj-xuja
JeM jeM

implying that (x*, 6*) is infeasible for (11a)—(11d) and thereby establishing a contradiction.
To prove I(x*) is consecutive, assume for the sake of deriving a contradiction that u €
N\ I(x*) and u + 1 € I(x*). As we established P(x*) C I(x*), necessarily u ¢ P(x*).
It then follows that

0* > b, — Zau_,»x;j =by, >byy1 >b,1 — Zauﬂ,jx;‘“,j = 0%,
jeM jeM
establishing a contradiction.

We next prove, again by contradiction, that ), _y xj; = C; for each j € M. Assume that
> ien Xiy < C, for some g € M. Let X € X coincide with x* except that e = Cy — >, .y x77
is equally distributed among all the x7,’s. It then follows from a > 0 that for each i € N,
b; — stM a;jXij < b; — ZjeM a;jx}; < 0* and therefore 0 = [max;ey {b; — ZjeM x4
satisfies 0 < 6 < 6*. So, (£,0) is feasible for (11a)—(11d) with objective value < 6%,
yielding a contradiction to the optimality of (x*, 6%).

(d): Assume that (x', 6*) is optimal for (11a)—(11d). Let D={i € N | b; <0*} and ¢ =
|D|. Evidently, the x;;’s for (i, j) € D x M can be reduced to 0 without affecting feasibility
or optimality to (11a)—(11d). Thus, it can be assumed that x; ;= Oforall (i, j)) e D x M. 1t
follows that constraints (11b) for i € D and variables x;; for (i, j) € D x M can be dropped
from LP (11a)—(11d) and each optimal solution of the reduced problem corresponds to an
optimal solution of (11a)—(11d) itself (by appropriately adding zero variables). The reduced
LP has n+m — g constraints, and m(n — g) + 1 variables. Adding slack and surplus variables
results in a standard form LP with m(n — g) + 1 4+ n + m nonnegative variables n +m — g
equality constraints whose constraint matrix has full row-rank. This LP has a basic optimal
solution, say (X, 6= 6*), with at most m + n — ¢ nonzero variables, one of which is 0. As
b; > 6% =6 forieN \ D, the feasibility for (11b) implies that |[{j € M | X;; > 0}| > 1 for
eachi e N\ D. As [N\ D|+1>n —q + 1 positive variables out of at most m +n — g
were accounted for, it follows that

Y [ltieM|z>0-1]<m+n—q)—(r—g+D=m—1.
ieN\D

Augmenting X with the zero variables corresponding to (i, j) € D x M yields an optimal
solution (x*, 8*) of (11a)—(11d) with the properties asserted in (d). O
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