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Abstract. The assignment problem is a well-known operations research model. Its various

extensions have been applied to the design of distributed computer systems, job assignment in
telecommunication networks, and solving diverse location, truck routing and job shop
scheduling problems.
This paper focuses on a dynamic generalization of the assignment problem where each task

consists of a number of units to be performed by an agent or by a limited number of agents at
a time. Demands for the task units are stochastic. Costs are incurred when an agent performs a
task or a group of tasks and when there is a surplus or shortage of the task units with respect

to their demands. We prove that this stochastic, continuous-time generalized assignment
problem is strongly NP-hard, and reduce it to a number of classical, deterministic assignment
problems stated at discrete time points. On this basis, a pseudo-polynomial time combinatorial

algorithm is derived to approximate the solution, which converges to the global optimum as
the distance between the consecutive time points decreases. Lower bound and complexity
estimates for solving the problem and its special cases are found.

1. Introduction

The assignment problem is a classic operations research model, which deals
with the optimal allocation of a number of tasks to a group of agents in
such a way that each agent is given one task to perform and each task is
assigned to one agent only (Hillier and Lieberman 1995). Due to the wide
range of applications in modeling real-life events, it has gained much atten-
tion from the operations research community. The assignment problem
and its various extensions were applied to the design of distributed com-
puter systems (Gavish and Pirkul 1986) and solving diverse location
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problems (Ross and Soland 1977). It was also used as a model for truck
routing problems (Murphy 1986), job assignment in computer networks
(Balachandran 1976), and is useful for problems in the areas of job shop
scheduling, cargo loading, ships and warehouse design (Gavish and Pirkul
1991).
Major extensions of the assignment problem are related to the types of

the resource constraints which define different resource consumption
modes, and the agent–task relationships by allowing an agent to perform
multiple tasks and/or a task to be performed by a number of agents sub-
ject to the resource availability. Specifically, an extension of the assignment
problem that considers side constraints on total resource consumption was
addressed by Mazzola and Neebe (1986). A wider extension, where multi-
ple tasks may be assigned to an agent, is usually referred to either as the
generalized assignment problem or, if multiple resources are involved, as
the multi-resource generalized assignment problem. These problems were
extensively studied by Ross and Soland (1975, 1977), Nauss (1976), Mar-
tello and Toth (1977), Klastorin (1979), Balas and Zemel (1980), and Yagi-
ura et al. (1999).
An evident restriction of the above static extensions of the assignment

problem is that the sequence in which an agent performs its tasks cannot be
taken into account. This sequence is essential when each task consists of a
batch of units that are processed to meet a given time-dependent demand
profile (i.e., processing ahead of the demand as well as backlogging incur ear-
liness and tardiness costs, respectively). Such a generalization was introduced
by Kogan et al. (1997) and referred to as the dynamic generalized assignment
problem (DGAP). The DGAP is formulated as a continuous-time model,
where each task consists of a number of units to be performed with a fixed
rate under the single resource constraint that prohibits an agent to carry out
more than one task at a time. The units of a task are allowed to be per-
formed simultaneously by different agents with no limits. The objective is to
minimize the costs of dynamic earliness and tardiness as well as the cost
incurred when performing the tasks by agents. The focus of the paper is on a
new dynamic extension of the assignment problem. Although the authors
show the unimodularity of the dual problem, it is not exploited. Instead, a
standard gradient-based solution algorithm with no control over accuracy
and convergence is employed to illustrate the approach. Such a method
becomes useless when the problem complicates. Therefore, the extension
restricts to deterministic demands and to only agent-related constraints.
This paper proceeds with extending the DGAP to cope with stochastic

environment and multiple agent–task relationships limiting, at every time
point, both the number of agents performing a task and the number of
tasks that can be performed by an agent. This is imposed with the aid of
the total unimodularity of the resource constraint matrix. Such two types
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of resource constraints ensure that the problems under consideration are
still in the framework of the assignment problem, but in the form of many-
to-many agent–task relationship.
Thus, every agent in our generalized problem deals with stochastic

demands encountered along the planning horizon, and is allowed to carry
out a limited number of tasks at a time within its time-dependent capac-
ity. Every task is processed by a limited number of agents specified by its
time-dependent availability. We assume that the realization of stochastic
demand and the number of the accomplished tasks are observable only
by the end of a time period. Thus, given demand univariate density and
autocorrelation functions for each task type, the determination of which
type of tasks to perform and when to perform must be made under these
uncertain conditions, before production commences. The well-known
application of such a generalization is found in the stochastic environ-
ment of the flow shop scheduling of parallel workstations and flexible
manufacturing cells, which can process a limited number of products at a
time while a limited pool of material-holding devices is available. Since
continuous review of product inventories is not always possible in the
flow shop, inventory update is available only at the end of a given time
period.
In this paper we take advantage of the unimodularity property to

develop a new solution method which enables to control both the algo-
rithm convergence and the solution accuracy. Thus, the contribution of the
paper is twofold:

(i) the mathematical formulation of the problem includes general sto-
hastic demands and agent–task relationships;

(ii) a new combinatorial algorithm which converges to the global opti-
mum is developed.

In Section 2, some applications of the dynamic assignment problem are
presented. The stochastic, dynamic generalized assignment problem
(SDGAP) is formulated in Section 3. Basic properties of the continuous-
time SDGAP are studied in Sections 4 and 5 and of the discrete-time
SDGAP in Section 6. This study shows that though the properties of the
optimal solutions derived for the DGAP (Kogan, et al. 1997) are no longer
valid, the dual SDGAP can be reduced to a number of the classical deter-
ministic assignment problems. Based on this result, a time-decomposition
needle algorithm is proposed in Section 7 to approximate numerically the
solution for various versions of the SDGAP. Section 8 discusses complexity
of the algorithm, which is essentially polynomial time for a large class of
problems, if computed on a fixed time grid, and its asymptotic convergence
to the globally optimal solution. Section 9 presents computational experi-
ments, while Section 10 summarizes the results.
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2. Examples

In this section we consider two examples, which present two classes of
problems where the SDGAP is straightforwardly applicable. Both classes
of problems are characterized by stochastic demands, limited task–agent
capacities, and periodic review of completed tasks. The first class is related
to the communication problems where channels, computers, or computer
memory have to be allocated to process the incoming calls, jobs, or
requests. The goal is to minimize delays (queues of awaiting jobs) and pro-
cessing costs. The second class is related to dynamic inventory manage-
ment. Inventory management is a general philosophy, which aims at
making the material flow between different sections smooth. The ultimate
goal is to produce only the necessary products in a required amount with-
out delay and unnecessary inventories.

2.1. DYNAMIC JOB ALLOCATION IN A COMPUTER NETWORK

A computer network is an interconnected group of independent computer
systems that communicate with each other and share resources such as pro-
grams, data, hardware, and software. As a primary goal, some networks
link functionally different and specialized computing facilities to avoid
duplicating unique hardware configurations. Global job scheduling in such
environments is not normally a difficult problem because most programs
are designed for only one of these specialized systems and the network dis-
tributes over a large area the unique capabilities of each node. However, in
a network of functionally similar nodes, the allocation of jobs can be a
major problem. The nodes may be local or distributed over a wide geo-
graphical area. An example of this type of design is a set of cooperating,
general purpose computers in which each machine (agent) can solve a num-
ber of the problems (tasks) submitted to the network, but where particular
machines hold a competitive advantage over other computers on a special-
ized subset of the jobs. This implies that each job (task) can be performed
by a limited number of machines (agents). Thus, given dynamic stochastic
demands, the allocation of jobs is straightforwardly formulated as
SDGAP. Moreover, load sharing between machines is common in the net-
work design. Therefore, a program initiated at a node that is temporarily
overloaded can be sent without delays to a temporarily underloaded node
with similar functional capabilities. This implies that the tasks can be pre-
empted at no cost and negligible setup time as assumed in the SDGAP.

2.2. SCHEDULING PRE-MEDIA PRINTING OPERATION IN A FLEXIBLE

PRODUCTION SYSTEM

The key tasks of a pre-media printing operation are to receive photographs/
images and text material; scan images; combine these elements into a mail
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order catalog, which provides proper color and layout; and then generate
the computer files and/or media which will enable printing presses to actu-
ally manufacture the catalogs. All tasks are performed with a large set of
pages on one or a few ample computer workstations. Once a task is com-
pleted for a page (no matter how many pages are assigned to this task), the
next task can be initiated for this page. Therefore, the operations can be
considered as parallel (start-to-start relationship) and easily preemptive.
Each key task is best handled by a number of workers (agents). However,
workers are specialized in a limited number of tasks and may simultaneously
perform them on computer workstations. Furthermore, negligible setup time
is needed for workers to change from one task/operation to another (e.g.,
task setups, station-to-station walk times). Finally, pre-media operations
suffer from high demand variability as well as extremely tight flow-time per-
formance requirements. Therefore, scheduling the key tasks for the incoming
materials over the workers, to avoid early completion of some pages at the
cost of expensive delays arising from other pages, is of great importance. A
simplified version of this example is studied in detail in Section 9.

3. Formulation of the SDGAP

Our extension of the DGAP deals with the allocation of a set of tasks J to
a group of agents I over planning horizon T. Each agent can process a
limited number of tasks and every task can be assigned to a limited num-
ber of agents at time t:X

j2J
yijðtÞObiðtÞ; i 2 I (agent resource constraint); ð1Þ

X

i2I
yijðtÞOvjðtÞ; j 2 J (task resource constraint); ð2Þ

where biðtÞ, vjðtÞ are the integer capacities of the agent and task resources
available at time t, respectively, and yijðtÞ is a decision variable:

yijðtÞ ¼
1; if agent i performs task j at time t;
0; otherwise;

�
i 2 I; j 2 J; ð3Þ

integrable on [0,T].
Every task is induced according to its stochastic demand djðtÞ for which

univariate density and autocorrelation functions are known. The dynamics
of such an agent–task system is described by the total flow of task units
performed by the agents at time t:

_XjðtÞ ¼
X

i2I
UijyijðtÞ � djðtÞ; j 2 J; ð4Þ

where XjðtÞ is a continuous and differentiable function which represents the
cumulative number of task j units at time t, over-performed (surplus) by
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time t if XjðtÞ > 0 and under-performed if XjðtÞ < 0 (shortage); Uij is the
intensity with which agent i is capable to perform task j. A natural bound-
ary condition for these differential equations is that in the beginning of the
planning horizon [0, T] the task levels are known:

Xj ð0Þ ¼ X0
j ; j 2 J: ð5Þ

For the system we are investigating, it is assumed that the realization of
stochastic demand and the level of the accomplished tasks XjðtÞare obser-
vable only by the end of the planning horizon, T. Therefore, the decision
has to be made under these uncertain conditions before the dynamic
assignment starts.
The objective of the SDGAP is to minimize the expected total cost of

shortages and surpluses as well as the cost of performing all tasks by the
agents:

Z ¼ E

Z T

0

X

i2I

X

j2J
CuðyijðtÞÞ þ

X

j2J
CxðXjðtÞÞ

 !
dt

" #
! min; ð6Þ

subject to constraints (1)–(5).
In this paper we assume, similar to the classical assignment problems,

the linear cost functions for performing task j by agent i, i.e.
CuðyijðtÞÞ ¼ c

y
ij yijðtÞ and the quadratic penalties for over- as well as under-

performed tasks, CxðXjðtÞÞ ¼ cxj XjðtÞ2. The approach developed in this
paper can be extended to apply to various symmetric (not only quadratic)
penalty functions. Although such an extension is straightforward, it un-
avoidably leads to awkward mathematical expressions obscuring the main
results and, therefore, it is not considered here.
Note that there is an asymmetry in agent–task dynamics. We study quite

straightforward extension of the assignment problem which assumes that
each type of task consists of a number of works to be completed with respect
to a given demand. This is described by the task dynamics (4). Applications
of this extension are well known and discussed in the paper. The model we
suggest could be extended to symmetrically incorporate the agent dynamics.
This would imply that we have different types of agents. The number of
agents of each type depends on the number of task works, agents of this type
are assigned to perform. This, in turn, would imply that the number of task
works assigned to a type of agents influences the intensities with which each
task is performed by the agents of this type. We do not consider such an
extension of the assignment problem because of two major reasons. First of
all, as it is shown in the paper, even the extension of the assignment problem
to incorporate only task dynamics results in an NP-hard problem. Conse-
quently, construction of an efficient algorithm for only this extension is quite
challenging. Secondly, applications of the agent dynamics are found rarely
in OR practice as compared to the task dynamics.
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4. Equivalent Deterministic Assignment Problem and its Dual Formulation

Generally, a random process is completely determined by its multivariate
distribution function. However, in practice, this function is rarely available.
Therefore various types of series expansions and quasi-deterministic forms
are commonly employed to represent the process (Van Trees 1968). In such
a case, the process is described by a number of deterministic functions with
randomized parameters. Widely used trigonometric series is an example of
random process representation by deterministic trigonometric functions
with random amplitude. This representation is very useful if the stochastic
process is periodic and stationary, because the random amplitudes become
uncorrelated. If this is not the case, more general orthogonal representa-
tions are utilized.
The well-known Karhunen–Loeve (KL) type of series is employed here

to illustrate the approach for general random demands which are not nec-
essarily stationary and periodic. Algazi and Sakrison (1969) showed that
KL expansion is optimal not only in terms of minimizing mean-square
error between the demand data and its truncated representation, but also
minimizes a number of modes to describe the data for a given error. The
optimality of KL reduces the amount of information required to represent
statistically dependent data to a minimum. This crucial feature explains the
wide usage of KL. Henceforth, a KL representation of demand is adopted
in the paper to study the SDGAP and derive an equivalent deterministic
problem.
If accuracy of such a representation is specified, then stochastic demands

for the tasks can be expanded in a finite element KL series. If, however,
the stochastic process is rational, then it can be exactly represented by a K-
element KL expansion (Youla 1957). In this paper we limit our consider-
ation to only rational demand processes:

djðtÞ ¼
X

k2K
njkujkðtÞ; j 2 J; t 2 ½0;T�; ð7Þ

where ujk; k 2 K, are orthonormal deterministic sample functions and njk
are independent random coefficients with expected values mjk, standard
deviations Djk, and density functions fjkðnÞ.

PROPOSITION 1. Let the demand be presented by ð7Þ. Then, the problem
ð1Þ–ð6Þ is equivalent to the following deterministic DGAP:

Z ¼
Z T

0

X

i2I

X

j2J
c
y
ijyijðtÞ þ

X

j2J
cxj

bXjðtÞ �
X

k2K
mjkûjkðtÞ

 !2
0
@

1
A dt! min

ð8Þ
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subject to constraints (1)–(3) and

_̂XjðtÞ ¼
X

i2I
UijyijðtÞ; j 2 J; ð9Þ

bXjð0Þ ¼ X0
j ; j 2 J; ð10Þ

where

ûjkðtÞ ¼
Z t

0

ujkðsÞ dt; j 2 J; k 2 K: ð11Þ

Proof. Introduce new variables X̂jðtÞ as defined in (9) into the differential
equation (4) with the demands (7):

_XjðtÞ ¼ _bXjðtÞ �
X

k2K
njkujkðtÞ: ð12Þ

Next, by integrating equation (12) and introducing new functions ûjkðtÞ as
defined in (11) we obtain:

XjðtÞ ¼ bXjðtÞ �
X

k2K
njkûjkðtÞ: ð13Þ

Equation (13) is then substituted into the objective (6) for which the
expected value is calculated as follows:

Z¼E

Z T

0

X

i2I

X

j2J
c
y
ijyijðtÞþ

X

j2J
cxj

bXjðtÞ�
X

k2K
njkûjkðtÞ

 !2
0
@

1
Adt

2
4

3
5

¼
Z T

0

X

i2I

X

j2J
c
y
ijyijðtÞþ

X

j2J
cxj

Z

fnjkg
bXjðtÞ�

X

k2K
njkûjkðtÞ

 !2Y

k2K
fjkðnjkÞ dnjk

0
@

1
Adt:

ð14Þ
The new objective now can be simplified by opening parentheses, replac-

ing integrals of the independent random coefficients multiplied by their
density functions with the corresponding moments. The resulting terms are
again collected into the following final functional:

Z T

0

X

i2I

X

j2J
c
y
ijyijðtÞ þ

X

j2I
cxj X̂jðtÞ �

X

k2K
mjkûjkðtÞ

 !2
0
@

þ
X

j2I
cxj

X

k2K
D2

jkû
2
jkðtÞ þ 2

X

k0 6¼k00
mjk0mjk00ûjk0 ðtÞûjk00 ðtÞ

 !!
dt:

Taking into account that
Z T

0

X

j2J
cxj

X

k2K
D2

jkû
2
jkðtÞ þ 2

X

k0 6¼k00
mjk0mjk00ûjk0 ðtÞûjk00 ðtÞ

 !
dt

is a given constant which does not influence the optimization, we finally
obtain the objective function (8) subject to constraints (1)–(3), (9) and (10).

(
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4.1. DUAL FORMULATION OF THE SDGAP

Since the equivalent deterministic DGAP model meets the canonical form
of an optimal control problem (Hartl et al. 1995, Dubovitsky and Milyutin
1981), where XjðtÞ are state variables and yijðtÞ are decision variables, the
maximum principle can be applied to develop a dual formulation of the
problem. The maximum principle asserts that there exist continuous dual
functions wjðtÞ, so that the following dual differential equations hold:

_wjðtÞ ¼ 2cxj
bXjðtÞ �

X

k

mjkbujkðtÞ
 !

; wjðTÞ ¼ 0; ð15Þ

and the optimal yijðtÞ is achieved by maximizing, for each t, the dual objec-
tive function (Hamiltonian function):

HðtÞ ¼ �
X

i2I

X

j2J
c
y
ijyijðtÞ �

X

j2J
cxj X̂jðtÞ �

X

k2K
mjkûjkðtÞ

 !2

þ
X

j2J
wjðtÞ

X

i2I
UijyijðtÞ; ð16Þ

subject to constraints (1)–(3).

5. Strong NP-hardness and Unimodality of the Equivalent DGAP

In this section we study two basic features of the equivalent DGAP: its
complexity and unimodality. To prove NP-hardness, we consider a simpli-
fied version of the equivalent DGAP. Optimal solutions of this version are
characterized by a no-switching policy, i.e. each agent performs only one
task over the entire planning horizon, as stated in Lemma 1. Since the no-
switching property holds for only a special version of the equivalent
DGAP, the proof of the lemma is relocated to Appendix.

LEMMA 1. On an optimal solution each agent performs no more than one
task over the entire planning horizon if

� agent capacities are minimal: biðtÞ ¼ bi ¼ 1, i 2 I and task capacities
are unlimited: vjðtÞ ¼ vjPjIj, j 2 J;
� the task intensities are not identical: Uij 6¼ Ui0j0 , i, i

0 2 I, j, j0 2 J;
� all demands are static, deterministic, equal djðtÞ ¼ d, j 2 J; and large

d >
Uij

P
i02I Ui0j

Uij �Uij0
�� �� ; 8i 2 I; j; j 0 2 J;

� there are no initial task units: X̂jð0Þ ¼ X 0
j ¼ 0, j 2 J;

� there are no processing costs: cyij ¼ 0, i 2 I, j 2 J;
� all penalties for shortages and surpluses are equal: cxj ¼ c, j 2 J.
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Based on Lemma 1, Theorem 1 shows that the continuous-time equiva-
lent DGAP is NP-hard.

THEOREM 1. The equivalent DGAP is strongly NP-hard even if

� agent capacities are minimal: biðtÞ ¼ bi ¼ 1, i 2 I and task capacities
are unlimited: vjðtÞ ¼ vjPjIj, j 2 J;
� the task intensities are not identical: Uij 6¼ Ui0j0 , i, i

0 2 I, j, j0 2 J.
� all demands are static, deterministic, equal djðtÞ ¼ d, j 2 J and large

d >
Uij

P
i02I Ui0 j

jUij�Uij0 j
, 8i 2 I, j, j0 2 J,

� there are no initial task units: bXjð0Þ ¼ X 0
j ¼ 0, j 2 J;

� there are no processing costs: c
y
ij ¼ 0, i 2 I, j 2 J;

� all penalties for shortages and surpluses are equal: cxj ¼ c, j 2 J.

Proof. Given the conditions of Theorem 1, let us integrate the differential
equation (9). Then by taking into account Lemma 1, we obtain:

bXjðtÞ � bXjð0Þ ¼
Z t

0

X

i2I
UijyijðsÞ ds) bXjðtÞ ¼ t

X

i2I
Uijyijð0Þ:

The expression obtained for bXjðtÞ can now be substituted into the objec-
tive. The new simplified version of our assignment problem then takes the
following form:

X

j2J
c
X

i2I
Uijyijð0Þ � d

 !2
T3

3
! min;

X

j2J
yijð0ÞO1; i 2 I;

yijð0Þ ¼ f0; 1g; i 2 I; j 2 J:

Next, taking into account that the constants c and T do not influence the
optimization and replacing yijð0Þ with yij, we obtain the following assign-
ment problem with a non-separable quadratic objective function:

X

j2J

X

i2I
Uijyij � d

 !2

! min; ð17Þ
X

j2J
yijO1; i 2 I; ð18Þ

yij 2 f0; 1g; i 2 I; j 2 J: ð19Þ

Any solution to this instance is a partition of the set of agents I into a num-
ber of disjoint subsets of agents Aj. In other words, by constraints (18) and
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(19), all agents i 2 Aj process task j and no other agent processes the same
task j. The objective is to minimize the total sum of squared differences
between the performance rate of every subset of agents and the demand.
To prove that the formulated problem is NP-hard, we now present the

minimum sum of squares (MSS) problem, which is proven to be NP-com-
plete in the strong sense by transformation from 3-partition (Garey and
Johnson 1991).

Problem MSS

Instance: Finite set A ¼ fa1; a2; . . . ; ang, size s: A! Zþ, positive integers
BOn and G.
Question: Can A be partitioned into B disjoint sets A1;A2; . . . ;AB such

that

XB

l¼1

X

a2Al

sðaÞ
 !2

OG: ð20Þ

Let us reduce MSS into the above special case of the equivalent DGAP
(17)–(19). Define I ¼ f1; 2; . . . ; ng and J ¼ f1; 2; . . . ;Bg. We also denote by
Aj the subset of agents which process task j, i.e. the agents for which

yij ¼
1 8i 2 Aj;

0 8i j2Aj:

(

Next, by letting Uij ¼ sðaiÞ, i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ;B the MSS can be
reformulated as follows:

XB

j¼1

X

i2Aj

Uij

0
@

1
A

2

OG:

Note that, by definition,
PB

j¼1
P

i2Aj
Uij ¼

Pn
i¼1 sðaiÞ.

Finally by adding to the both sides of the last inequality the term:

XB

j¼1
d2 � 2d

XB

j¼1

X

i2Aj

Uij;

and introducing the new constant G0 ¼ Gþ
PB

j¼1 d
2 � 2d

PB
j¼1
P

i2Aj
Uij we

obtain:

XB

j¼1

X

i2Aj

Uij � d

0
@

1
A

2

OG0: ð21Þ

By setting the demands for all tasks to be very large, and considering
that there is no cost for processing tasks and the penalties for surpluses
and shortages are equal, we can assume without loss of generality that all
B tasks are processed in the optimal solution of the problem (17)–(19).

ASSIGNMENT PROBLEMS WITH STOCHASTIC DEMANDS 27



Consequently, by comparing inequality (21) and the objective (17), one can
easily observe that the solution of (17)–(19) solves the original instance of
MSS. This proves that the equivalent DGAP (17)–(19) is strongly NP-hard.

(

Now let us define the relaxation of the equivalent DGAP by allowing
decision variables to be continuous:

0OyijðtÞO1; ð22Þ
rather than binary, yijðtÞ 2 f0; 1g, as imposed by constraint (3). We wish to
show that if the optimal solution yijðtÞ of the relaxed DGAP satisfies the
integrality property, i.e. yijðtÞ 2 f0; 1g, i 2 I, j 2 J, t 2 ½0;T�, then an effec-
tive time-decomposition approximation algorithm can be developed to
solve the original, NP-hard equivalent DGAP. The following theorem for-
malizes the fact that the relaxed DGAP possesses the integrality property.

THEOREM 2 (the integrality property). The relaxed equivalent DGAP
with integer capacities biðtÞ and vjðtÞ has a binary optimal solution.

Proof. To prove this theorem, we turn to the dual formulation of the
equivalent DGAP (15) and (16). Note that the relaxed DGAP and its
deterministic equivalent contain only linear constraints, while the objective
is a sum of convex functions. Thus, the relaxed DGAP is unimodal. This
means that a solution for the dual problem (i.e., yijðtÞ, which maximize the
Hamiltonian (16)), is the globally optimal solution of the primal problem.
Consequently, if the dual problem possesses the integrality property, i.e., it
always has an optimal binary solution, then this binary solution is also
optimal for the primal problem. Therefore, the proof of Theorem 2 is
reduced to the proof that the dual problem with the relaxed binary con-
straint possesses the integrality property.
Let us combine only decision-dependent terms in the Hamiltonian (16).

Then the dual problem takes the following form:

X

i2I

X

j2J
ðUijwjðtÞ � c

y
ij ÞyijðtÞ ! max; ð23Þ

X

j2J
yijðtÞObiðtÞ; i 2 I; ð24Þ

X

i2I
yijðtÞOvjðtÞ; j 2 J; ð25Þ

yijðtÞ 2 ½0; 1�; i 2 I; j 2 J: ð26Þ
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According to the dual formulation, the objective (23) is maximized at
every point of time t, independently, with yijðtÞ being variables and wjðtÞ
being parameters. By setting cij ¼ c

y
ij �UijwjðtÞ, one can immediately

observe that the resulting problem (23)–(26) is the static assignment problem
with relaxed 0–1 constraints and multiple agent–task relationships. That is,
the resource constraints (24) and (25) are presented by a totally unimodular
matrix. At each t, such problem always has an integer 0–1 optimal solution
if the capacities are integer. (

Theorem 2 proves that the relaxed dual problem has optimal integer solu-
tions for arbitrary dual variables wjðtÞ. However, wjðtÞ which satisfies the
dual equation (15) is unknown. Therefore, solving the dual problem (16) for
a wjðtÞ in polynomial time does not reduce the complexity of the primal
problem proved in Theorem 1. In the following, we suggest an algorithm to
calculate such wjðtÞ for which both (15) and (16) hold, and thus the solution
of the dual problem becomes the optimal solution of the primal.

6. The Discretized Equivalent DGAP

Prior to suggesting a pseudo-polynomial time numerical method, which oper-
ates on a fixed time grid, it is important to determine whether the discrete
version of our problem can be exactly solved in polynomial time or not.
To present a discrete version of the equivalent DGAP, we consider D-grid

which is constructed by Rþ 1 equally distributed mesh points tr, such that:

t0 ¼ 0; trþ1 � tr ¼ D; r ¼ 0; 1; . . . ;R� 1; tR ¼ T:

Then, the agent–task constraints take the following form:
X

j2J
yijðtrÞObiðtrÞ; i 2 I; ð27Þ

X

i2I
yijðtrÞOvjðtrÞ; j 2 J; ð28Þ

yijðtrÞ ¼
1; if agent i performs task j at time tr;

0; otherwise;

(
i 2 I; j 2 J: ð29Þ

The differential equation is replaced with the difference equation:

bXjðtrþ1Þ � bXjðtrÞ ¼ D
X

i2I
UijyijðtrÞ; bXjðt0Þ ¼ X0

j ; j 2 J: ð30Þ

The objective is

Z ¼ D
X

r

X

i2I

X

j2J
c
y
ijyijðtrÞ þ

X

j2J
cxj

bXjðtrÞ �
X

k2K
mjkûjkðtrÞ

 !2
0
@

1
A! min:

ð31Þ
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THEOREM 3. The discretized equivalent DGAP is strongly NP-hard even
if
� there is only one discrete time interval [0,T], i.e., the distance between
the two consecutive time points of the grid is D ¼ T;
� agent capacities are minimal: biðtÞ ¼ bi ¼ 1, i 2 I, and task capacities
are unlimited: vjðtÞ ¼ vjPjIj, j 2 J;
� all demands are static, deterministic, very large and equal: djðtÞ ¼ d,
j 2 J;
� there are no initial task units: Xjð0Þ ¼ X 0

j ¼ 0; j 2 J;
� there are no processing costs: c

y
ij ¼ 0; i 2 I; j 2 J;

� all penalties for shortages and surpluses are equal: cxj ¼ c; j 2 J.

Proof. Let us consider the difference equations describing a single time step
r ¼ 0; 1 in the discrete formulation of the equivalent DGAP with constant
demands:

bXjðTÞ � bXjð0Þ ¼ D
X

i2I
Uijyijð0Þ ) bXjðTÞ ¼ T

X

i2I
Uijyijð0Þ:

The expression obtained for bXjðTÞ can now be substituted into the objec-
tive. The new simplified version of our assignment problem then takes the
following form:

X

j2J
c
X

i2I
Uijyijð0Þ � d

 !2

T3 ! min;

X

j2J
yijð0ÞO1; i 2 I;

yijð0Þ ¼ f0; 1g; i 2 I; j 2 J:

The rest of the proof is identical to that presented in Theorem 1. (

7. Time-decomposition Needle Algorithm

Time-decomposition methods have been proved to be effective for solving
complex dynamic problems (Sousa and Pereira 1992, Khmelnitsky et al.
1995). The main idea of the proposed time-decomposition algorithm is to
solve iteratively a number of the dual equivalent DGAP formulated on a
D-grid with Rþ 1 equally distributed mesh points tr.
At every iteration, a point of the grid is searched where the dual problem

provides the maximal improvement in the objective value. At this point, a
currently optimal set of unit decision variables is set for the minimum time
interval D. Such decisions yijðtÞ ¼ 1, t ¼ ½tr; trþ1� of the minimum duration D
are further referred to as needles. The procedure terminates when no
improvement is attainable over the planning horizon.
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NEEDLE ALGORITHM

Input: Uij, c
y
ij, c

x
j , biðtrÞ, vjðtrÞ, X0

j ;mjk, ûjkðtrÞ, T, D for i 2 I, j 2 J, k 2 K,

r ¼ 0; . . . ;R.

Output: yijðtrÞ, bXijðtrÞ for i 2 I, j 2 J, r ¼ 0; . . . ;R.
Step 1. Choose a feasible solution for the problem (27)–(31), e.g.,
y0ijðtrÞ ¼ 0, i 2 I, j 2 J, r ¼ 0; . . . ;R. Set the objective value Z at infinity.
Step 2. Integrate (from left to right) the primal difference equation (30)
with its initial condition and given y0ijðtrÞ as the initial-value problem to
determine task levels bXjðtrÞ, j 2 J, r ¼ 1; . . . ;R.
Step 3. For the obtained task levels and decision variables calculate the
objective function (31). If it is improved, then go to the next step. Other-
wise halt; the solution has been found.
Step 4. Integrate (from right to left) the dual difference equation

wjðtr�1Þ ¼ wjðtrÞ � 2Dcxj bXjðtrÞ �
X

k

mjkûjkðtrÞ
 !

; wjðtRÞ ¼ 0 ð32Þ

with given task units bXjðtrÞ as the terminal-value problem to find dual vari-
ables wjðtrÞ, j 2 J, r ¼ 0; . . . ;R� 1.
Step 5. For the obtained dual and decision variables calculate the decision-
dependent term of the Hamiltonian HyðtrÞ ¼

P
i2I
P

j2J y
0
ijðtrÞ�

ðUijwjðtrÞ � c
y
ijÞ, r ¼ 0; . . . ;R.

Step 6. At each point tr of D-grid, solve the dual equivalent DGAP as the
corresponding static assignment problem with the objective function

H�yðtrÞ ¼ max
yijðtrÞ

HyðtrÞ ¼ max
yijðtrÞ

X

i2I

X

j2J
yijðtrÞðUijwjðtrÞ � c

y
ijÞ;

s.t. constraints (27)–(29). Denote the solution of this problem at time tr as
y�ijðtrÞ.
Step 7. Find the point of time r� where the variation of the Hamiltonian is
maximum: r� ¼ argmaxr dHyðtrÞ, where dHyðtrÞ ¼ H�yðtrÞ �HyðtrÞ. Set nee-
dles of width D as follows:

yijðtrÞ ¼
y�ijðtrÞ; if r ¼ r�;

y0ijðtrÞ; otherwise;

(
i 2 I; j 2 J:

Step 8. Set y0ijðtrÞ ¼ yijðtrÞ, i 2 I, j 2 J, r ¼ 0; . . . ;R, and return to Step 2.

8. Needle Algorithm Complexity

We start with the convergence of the proposed algorithm to the unique
optimal solution (see Theorem 2), and then proceed to studying its com-
plexity for three important practical SDGAP cases.
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PROPOSITION 2 (asymptotic convergence). The Needle algorithm per-
formed on a D-grid converges to the optimal solution of the continuous-time
equivalent DGAP as D! 0.

Proof. Let us restart the algorithm several times while decreasing D. More
exactly, let D1 > 0 be fixed and choose Dpþ1 ¼ Dp=2 for p ¼ 1; 2; . . .. As a
result, we obtain a sequence of solutions each of which is a local optimum
of the discrete-time problem with respect to the selected initial set of feasi-
ble and finite-dimensional decision variables. Thus, to prove the proposi-
tion, we have to show that each sequence of the locally optimal solutions
of the discrete-time problem converges to the global solution of the contin-
uous-time problem. Suppose that this is not true and there exist two
sequences of the locally optimal solutions of the discrete-time problem, S1

p

and S2
p for p ¼ 1; 2; . . ., such that

lim
p!1
ðZ1

p � Z2
pÞ ¼ A > 0; ð33Þ

where Z1
p and Z2

p are the corresponding sequences of the objective values.
Consider continuous-time solutions S3

p and S4
p which are built on the

basis of S1
p and S2

p as follows:
• the decision variable yijðtÞ of S3

p equals the decision variable yijðtrÞ
of S1

p,

yijðtÞ ¼ yijðtrÞ for trOt< trþ1; i 2 I; j 2 J; r¼ 0; . . . ;R� 1;

p¼ 1;2; . . . ; ð34Þ
� the decision variable yijðtÞ of S4

p equals the decision variable yijðtrÞ
of S2

p,

yijðtÞ ¼ yijðtrÞ for trOt < trþ1; i 2 I; j 2 J; r ¼ 0; . . . ;R� 1;

p ¼ 1; 2; . . . : ð35Þ
Denote by Z3

p and Z4
p the objective values of the solutions S3

p and S4
p. Note,

the more we restart the algorithm, the closer the discrete-time optimal solu-
tion approaches a continuous-time solution with infinite-dimensional bin-
ary decision variables. Since each of the discrete-time locally optimal
solutions S1

p and S2
p satisfies the discrete-time form of the optimality condi-

tions (see Step 6 of the algorithm), S3
p and S4

p determined by (34) and (35)
must satisfy the continuous-time form of the same conditions (23)–(26) as
p!1. However, the continuous-time problem is unimodal, which implies:

lim
p!1
ðZ3

p � Z4
pÞ ¼ 0: ð36Þ

Furthermore, from (34) and (35), it immediately follows that:

lim
p!1
ðZ1

p � Z3
pÞ ¼ 0 and lim

p!1
ðZ2

p � Z4
pÞ ¼ 0: ð37Þ

By considering (36) and (37) together, we conclude that limp!1ðZ1
p�

Z2
pÞ ¼ 0 which contradicts (33). (
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COROLLARY 1 (lower bound). Assume that the optimal value Zp of the
equivalent DGAP is calculated by the Needle algorithm performed on a Dp-
grid. Also let ZR

p be the optimal value for the relaxed DGAP on the same
time grid, i.e. constraints (3) are replaced with (22). Then

ZR
p OZp and lim

p!1
Zp ¼ lim

p!1
ZR

p :

Proof. The relaxed DGAP with a fixed Dp is a quadratic programming
problem, for which feasible solutions are not necessarily binary. Therefore,
it does not cover all feasible solutions for the equivalent DGAP, i.e.
ZR

p OZp. However, Proposition 2 says that limp!1Zp ¼ Z1 holds, where
by Z1 we denote the value of the objective function for the continuous-
time problem. By the same argument, we have limp!1ZR

p ¼ ZR
1. Further-

more, Theorem 2 says that Z1 ¼ ZR
1 holds. Thus, limp!1Zp ¼

limp!1ZR
p . (

Note that the above lower bound is necessary to assess whether Dp is
chosen properly, so that a required accuracy is guaranteed. When the dif-
ferential equations are replaced with the corresponding difference equations
on a Dp-grid, the lower bound ZR

p is obtained in polynomial time from the
relaxed DGAP solvable as a quadratic programming problem with linear
constraints.

PROPOSITION 3. The Needle algorithm on a D-grid with Rþ 1 equally
distributed mesh points (D ¼ T=R) requires at most ðV=eÞR3 iterations,
where

V ¼ D
T3

XR

r¼1

X

j2J
cXj X 0

j �
X

k2K
mjkûjkðtrÞ

 !2
0
@

1
A; ð38Þ

e ¼ min
dyij2f1;0;�1g
dyi0 j2f1;0;�1g

2
X

i2I

X

j2J

X

i02I
cxj UijUi0jdyijdyi0j

 !þ
; ð39Þ

and operator aþ is determined as: aþ ¼ 1 if aP0 and aþ ¼ jaj if a < 0.

Proof. We consider a small variation of the decision variables (D! 0).
Therefore, the terms of higher orders of D than the first order, are negligible.
The variation of the objective function in the first order of D on an itera-

tion of the algorithm is due to the needles set by Step 7 at point tr� :

dZ ¼ D
X

i2I

X

j2J
c
y
ijdyijðtr� Þ þ D

XR

r¼r�þ1

X

j2J
2cxj

bXjðtrÞ �
X

k2K
mjkûjkðtrÞ

 !
d bXjðtrÞ

 !
;

ð40Þ
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where dyijðtrÞ can be equal either to 1, or to 0, or to �1; and d bXjðtrÞ is the
corresponding variation of the task levels bXjðtrÞ,

d bXjðtrÞ ¼ D
X

i2I
Uijdyijðtr�Þ for all r > r�; j 2 J: ð41Þ

By integrating (32), we obtain

wjðtrÞ ¼ �D
XR

r0¼rþ1
2cxj

bXjðtr0 Þ �
X

k2K
mjkûjkðtr0 Þ

 ! !
; ð42Þ

and substituting (41) and (42) into (40), we obtain

dZ ¼ D
X

i2I

X

j2J
dyijðtr�Þðcyij �Uijwjðtr�ÞÞ: ð43Þ

According to (42) and (43), the minimum deviation of Uijwjðtr�Þ from c
y
ij

occurs when at the previous mesh point tr��1 the following holds:

bXjðtr��1Þ ¼
X

k2K
mjkûjkðtr��1Þ and Uijwjðtr��1Þ ¼ c

y
ij:

In this case, at point tr� :

bXjðtr�Þ �
X

k2K
mjkûjkðtr�Þ ¼ D

X

i2I
Uijdyijðtr�Þ

and

Uijwjðtr�Þ � c
y
ij ¼ 2cxj D

2Uij

X

i02I
Ui0jdyi0jðtr�Þ: ð44Þ

In all other cases the deviation of Uijwjðtr�Þ from cyij is evidently OðDÞ,
rather than OðD2Þ as in this case. By substituting (44) in (43), we obtain
the minimum improvement of the objective as

min jdZjP min
dyij2f1;0;�1g
dyi0 j2f1;0;�1g

2D3
X

i2I

X

j2J

X

i02I
cxj UijUi0jdyijdyi0j

 !þ
:

Operator aþ excludes the needles which result in deterioration of the
objective, dZP0.
Given D 6¼ 0, the maximum number of iterations, required to calculate

the optimal solution under the slowest improvement in the objective at
every iteration, is straightforwardly defined as follows:

n ¼ Z1 � Z2

eD3
¼ Z1 � Z2

eT3
R3; ð45Þ

where the minimal value Z2 of the objective is a non-negative number and
the maximal value of the objective Z1 from which the algorithm starts is
obtained by setting all decision variables at zero:

Z1 ¼
XR

r¼1

X

j2J
cxj X0

j �
X

k2K
mjkûjkðtrÞ

 !2
0
@

1
AD:
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The proof is completed by replacing: V ¼ Z1=T
3 in (45) and setting

Z2 ¼ 0. (
We are now able to estimate the worst-case complexity of the Needle

algorithm for special versions of the equivalent DGAP found in practice.

THEOREM 4. The Needle algorithm solves the equivalent DGAP on a D-
grid with Rþ 1 equally distributed mesh points (D ¼ T=R) in the computa-
tion time OðV=eR4a3Þ (capacity-dependent estimate)

a ¼ 2max
r

X

i

biðtrÞ þ
X

j

vjðtrÞ
( )

;

or OðV=eR4a4 log aÞ time ðcapacity-independent estimate),

a ¼ 2jIj þ 2jJj;
where V and e are determined by (38) and (39), respectively.

Proof. Step 6 of the algorithm is the most complex step. The integration
of the primal and dual equations (30) and (32) as well as of the objective
function (31) evidently requires OðIJRÞ operations. In step 6, the static
dual-assignment problem with multiple agent–task relationship is solved R
times. To reduce this problem to the classical one with one-to-one agent–
task relationship, we simply break down at every time point tr every agent
i into biðtrÞ agents and every task j into vjðtrÞ tasks and add slack variables
(dummy agents and dummy jobs) to produce equalities from inequality
constraints (1) and (2). Then the new set of agents becomes equal to the
new number of tasks, which is

P
i biðtrÞ þ

P
j vjðtrÞ. Thus, the maximal

number of nodes we obtain for the classical assignment is:
a ¼ 2maxtrf

P
i biðtrÞþ

P
j vjðtrÞg while the maximal number of arcs is

b ¼ a
2 � a2. The best available, strongly polynomial time bound for the classi-

cal assignment problem is Oðabþ a2 log aÞ (e.g., Ahuja et al. (1993)).
By taking into account that the assignment problem is solved R times at

each iteration and that the maximal number of iterations is derived in
Proposition 2, one can readily obtain OðV=eR4ða3=4þ a2 log aÞÞ from
where the capacity-dependent estimate stated in this theorem immediately
follows.
To obtain a capacity-independent estimate, we utilize the fact that the

multiple agent–task assignment is a special case of the minimum cost flow
problem, which contains no transshipment nodes. Similar to the previous
estimate, we use slack variables to convert inequality constraints (1) and
(2) into equalities and to ensure the mass balance

P
i biðtrÞ ¼

P
j vjðtrÞ.

Finally, we take the best available time bound for this problem
Oððb log aÞðbþ a log aÞÞ, where a ¼ 2jIj þ 2jJj and b ¼ a

2 � a2, and apply the
same argument as the case of capacity-dependent estimate. Thus, we obtain
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the complexity as OðV=eR4ða24 log aÞða
2

4 þ a log aÞÞ, from which the capacity-
independent estimate follows immediately. (

Theorem 4 considers a general case of the SDGAP where the number of
tasks and the number of agents are limited by the agent and task resource
constraints (1) and (2), respectively, which imply vjðtÞOjIj and biðtÞOjJj.
The following two corollaries are concerned with very important special
cases of the dynamic assignment problem applied to scheduling flexible
manufacturing systems. One is the case of scheduling a number of the
workstations (agents) processing a limited number of parts (tasks)
(biðtÞOjJj), when there is no limit on the number of the workstations
simultaneously processing the same part (vjðtÞPjIj). The other is a classical
preemptive scheduling of machines which process at most one product at a
time (biðtÞ ¼ 1) to minimize dynamic tardiness and lateness. In both special
cases, the complexity of the algorithm significantly decreases, compared
with the general result of Theorem 4.

COROLLARY 2. The Needle algorithm solves the equivalent DGAP on a
D-grid with Rþ 1 equally distributed mesh points with unlimited task ðor
agentÞ capacities in

O V=eR4jIkJj log jJj
� �

time if vjðtÞPjIj;

O V=eR4jIkJj log jIj
� �

time if biðtÞOjJj:

Proof. The difference from the equivalent DGAP is that the Needle algo-
rithm, in Step 6, solves the simplified assignment problem R times:

X

i2I

X

j2J
ðUijwjðtÞ � cyijÞyijðtÞ ! max;

X

j2J
yijðtÞObiðtÞ; i 2 I;

yijðtÞ 2 ½0; 1�; i 2 I; j 2 J:

Since there is no constraint that correlates different agents, this problem
can be decomposed into jIj independent optimization problems, each of
which is solvable by the following greedy procedure.

For every agent i: Sort all tasks in a non-increasing order of positive
gradients @H=@yij ¼ ðUijwiðtÞ � cyijÞ. Let the number of positive gradients
be niðtÞ. Then, in the constructed sequence of tasks, assign the first
minfbiðtÞ; niðtÞg tasks to the agent i : yijðtÞ ¼ 1, and yijðtÞ ¼ 0 for the
other tasks in the sequence.

By taking into account that sorting requires OðjJj log jJjÞ time for every
agent i, we readily obtain the complexity stated in the corollary. (
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COROLLARY 3. The Needle algorithm solves the equivalent DGAP on a
D-grid with Rþ 1 equally distributed mesh points with unlimited task (or
agent) capacities and a single agent (or task) capacity in

O
V

e
R4jIjðjJj þ 1Þ

� �
time if bi ¼ 1 and vjðtÞPjIj;

O
V

e
R4jJjðjIj þ 1Þ

� �
time if vj ¼ 1 and biðtÞPjJj:

Proof. The difference form of the equivalent DGAP is again the assign-
ment problem to be solved in step 6. The new assignment problem we
obtain in the dual space is:

X

i2I

X

j2J
ðUijwjðtÞ � c

y
ijÞyijðtÞ ! max;

X

j2J
yijðtÞO1; i 2 I;

yijðtÞ 2 ½0; 1�; i 2 I; j 2 J:

This problem is also decomposed into jIj independent optimization prob-
lems, each of which is solvable in a straightforward manner by trying an
agent to perform every single task (jJj operations) and do not perform any
task (one operation) and comparing the objective value. This requires a
total of jIjðjJj þ 1Þ operations. (

9. Computational Results

In this section we present an example and computational results of the
experiments conducted in order to assess the accuracy of the algorithm for
various time grids D.
We illustrate a model for the assignment problem found in a copy center

at a university bookstore. There are six machines (agents) of four different
types. Each machine can copy one or more of the following page sizes
(tasks): A4 (j ¼ 1), Legal (j ¼ 2), B4 (j ¼ 3), A3 (j ¼ 4). Since each machine
can carry out only one task at a time, the agent resource is biðtÞ � 1,
i ¼ 1; . . . ; 6. The task resources are set at v1ðtÞ ¼ v3ðtÞ ¼ v4ðtÞ � 2 and
v2ðtÞ � 4. Every task can hardly be assumed to be demanded in a steady
and pure deterministic fashion. The demand forecasts given below were
calculated by SPSS nonlinear autoregression analysis performed on the
data of the copy center:
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d1ðtÞ ¼ 2þ n1ð�0:25t4 þ 4:55t3 � 25t2 þ 44tÞ;

d2ðtÞ ¼ 5þ n2ð�0:235t4 þ 4:47t3 � 26t2 þ 40:4tÞ;

d3ðtÞ ¼ n3ð�0:25t4 þ 4:2t3 � 20t2 þ 40tÞ;

d4ðtÞ ¼ n4ð0:33t3 � 7:2t2 þ 40tÞ;

where the expected values of the random coefficients nj are, respectively,
m1 ¼ 0:05, m2 ¼ 0:05, m3 ¼ 0:02, m4 ¼ 0:03. Initial task levels are given as
follows: X0

1 ¼ X0
3 ¼ 0, X0

2 ¼ 1;X0
4 ¼ 2; and all cost coefficients for task sur-

pluses and shortages are set at 25 cost units.
The time it takes to copy a page on each of the six machines and the

cost per page incurred when working on the machines are summarized in
Table 1. The problem of assigning tasks along the working hours is typical
of this type of operation. The task units (in 1000 pages) along with the
optimal sequence for performing them found by our algorithm for D ¼ 1

2
(T ¼ 10), as well as the expected values of the corresponding demands (in
1000 pages per hour), are shown in Figure 1. Assignment of four different
page sizes (tasks) over the planning horizon for every copy machine is
shown by boxes of four black-white intensities.
Table 2 presents computation times and deviation of the objective value

(Relative Optimality Gap) obtained on an IBM PC-586 computer
(120MHz, REM 32Mb) when applying the Needle algorithm and mathe-
matical programming (NLP) package GAMS. The table compares the nee-
dle-based optimal solutions with corresponding lower bounds (Needle VS
Relaxation) for various assignment problems, where IJ is an integrated
index obtained as the product of the number of agents and tasks and
IJ(R+1) is the total number of variables.
Table 2 shows the average running time and the convergence of the algo-

rithm based on several hundreds computational experiments. The experi-

Table 1. Time and cost per page on each of the copy machines

Page size

Machine

number,

Machine

type

A4 Legal B4 A3

i Time Cost Time Cost Time Cost Time Cost

1 A 1 2 1.3 2.5 1.5 2.7 2.0 3.0

2 A 1 2 1.3 2.5 1.5 2.7 2.0 3.0

3 B 0.8 2.5 1.0 2.5 1.2 2.7 1.8 2.8

4 C 1.3 1.6 1.5 2.3 1.8 2.3 2.0 2.5

5 C 1.3 1.6 1.5 2.3 1.8 2.3 2.0 2.5

6 D 1.5 1.5 2.0 2.0 2.3 2.0 2.3 2.5
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ments were conducted on the planning horizon of T ¼ 10 time units with
linear demand functions djðtÞ ¼ njðaj þ bjtÞ. The demand parameters for
each I and production rates were chosen randomly, aj within the range [2I,
5I], bj within the range ½� 1

5 I;
1
5 I�, and Uij within the range [0, 10]. The
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Figure 1. Solution and the expected demands for the university shop.
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expected values of the random coefficients nj were chosen equal to 1 for
each j. The uniform distribution was also used to generate the capacities
biðtÞ and vjðtÞ as constants for each I and J in the range of [0,J] and [0,I],
respectively.
Table 2 also shows that the optimality gap between the suggested Needle

algorithm and the corresponding lower bound shortens from almost 50%
to a few percents as D reduces from 1 to 1/16 time unit.

10. Summary and Conclusions

A dynamic generalization of the well-known assignment problem, SDGAP,
is introduced to incorporate important factors such as time, multiple
agent–task relationships and stochastic demands for the task units.
Although this assignment problem is NP-hard, it is revealed by applying
the maximum principle that the problem has an integrality property and its
dual formulation is polynomially solvable at every time point. Moreover,
the dual problem is a classical assignment with multiple agent–task rela-
tionships. Based on these results, a needle time-decomposition algorithm is
proposed, in which the classical assignment is solved as a subroutine to
approximate the optimal solution in the dual space. The algorithm runs in
pseudo-polynomial time for various versions of the SDGAP and converges
to the globally optimal solution as the size of the time grid decreases.

Table 2. Computational results

Period, D Variables Optimality gap (%) CPU time (min)

IJ(R+1) Needle VS

relaxation

Needle solution Relaxed solution

IJ = 4

1 44 34.0 0.03 0.91

1/2 84 19.1 0.09 0.92

1/4 164 9.3 0.33 1.11

1/8 324 3.9 1.38 1.40

1/16 644 1.9 6.90 3.28

IJ = 10

1 110 46.5 0.04 1.10

1/2 210 25.3 0.21 1.13

1/4 410 11.3 0.52 1.41

1/8 810 4.4 3.30 5.52

1/16 1610 2.0 14.7 13.1

IJ = 15

1 165 61.1 0.07 1.02

1/2 315 32.9 0.35 1.21

1/4 615 15.1 1.37 1.55

1/8 1215 5.3 6.10 6.31

1/16 2415 2.4 19.2 15.3
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Appendix

LEMMA A.1. On an optimal solution each agent performs no more than
one task over the entire planning horizon if
� agent capacities are minimal: biðtÞ ¼ bi ¼ 1, i 2 I, and task capacities
are unlimited: vjðtÞ ¼ vjPjIj, j 2 J;
� the task intensities are not identical: Uij 6¼ Ui0j0 , i; i

0 2 I, j; j0 2 J;
� all demands are static, deterministic, equal: djðtÞ ¼ d; j 2 J and large

d >
Uij

P
i02I Ui0j

jUij �Uij0 j
; 8i 2 I; j; j0 2 J;

there are no initial task units: bXjð0Þ ¼ X0
j ¼ 0, j 2 J;

� there are no processing costs: c
y
ij ¼ 0, i 2 I, j 2 J;

� all penalties for shortages and surpluses are equal: cxj ¼ c, j 2 J.

Proof. First note, given conditions of the lemma, the dual formulation
(15)–(16) simplifies to

_wjðtÞ ¼ 2cð bXjðtÞ � dtÞ;wjðTÞ ¼ 0: ðA:1Þ

HðtÞ ¼ �
X

j2J
cð bXjðtÞ � dtÞ2 þ

X

j2J
wjðtÞ

X

i2I
UijyijðtÞ: ðA:2Þ

By maximizing the Hamiltonian with respect to yijðtÞ, we immediately find
the following optimal behavior:

yijðtÞ ¼
1; if wjðtÞ > 0 and UijwjðtÞ > Uij0wj0 ðtÞ; j 6¼ j 0;

0; if wjðtÞ < 0 or 9j0 6¼ j;UijwjðtÞ < Uij0wj0 ðtÞ;
yij 2 f0; 1g; otherwise:

8
><

>:
ðA:3Þ

Next, based on (A.3), we prove by contradiction that no agent switches
between tasks an infinite number of times. Indeed, such infinite switching
(chattering) of agent i can occur only when

UijwjðtÞ ¼ Uij0wj0 ðtÞ ðA:4Þ
for a pair of tasks j and j0 on an interval of time. By differentiating twice
the last condition and taking into account equations (9) and (A.1), we
obtain that on this time interval

Uij

X

i02I
Ui0jyi0jðtÞ � d

 !
¼ Uij0

X

i02I
Ui0j0yi0j0 ðtÞ � d

 !
:

Resolving the last equation in d results in

d ¼ Uij

P
i02I Ui0jyi0jðtÞ �Uij0

P
i02I Ui0j0yi0j0 ðtÞ

Uij �Uij0
: ðA:5Þ

ASSIGNMENT PROBLEMS WITH STOCHASTIC DEMANDS 41



By taking into account the fact that max yijðtÞ ¼ 1, min yijðtÞ ¼ 0 and
Uij 6¼ Uij0 , we find that condition d > Uij

P
i02I Ui0j=jUij �Uij0 j, 8i 2 I, j,

j0 2 J of Lemma A.1 ensures (A.5) never holds. Therefore, (A.4) cannot
hold on an interval of time that contradicts our assumption that agent i
switches an infinite number of times.
Finally, we prove that no agent switches between tasks a finite number

of times. To this end, it is sufficient to show that no task is performed by
different agents over the planning horizon. The proof is again by contra-
diction. Let task j be initially performed by agent i and at time s agent i0

starts performing the task until time p, pOT. Assume that this sequence is
optimal and let a ¼ Uij � d and b ¼ Ui0j � d. The cost incurred by task j
over interval t 2 ½0; p� is

J¼
Z p

0

cð bXjðtÞ� tdÞ2dt¼ c
1

3
a2s3þðp� sÞ a2s2þ absðp� sÞþ 1

3
b2ðp� sÞ2

� �� �
:

In order to find the best switching point, s, for the described sequence,
we differentiate J with respect to s

J0s ¼ cðp� sÞða� bÞðð2a� bÞsþ bpÞ:
Since switching infinite number of times has been proven to be impossi-

ble, p� s > 0, therefore, J0s does not equal zero on interval s 2 ð0; pÞ. Thus,
no change of agents when performing task j can be optimal over the plan-
ning horizon, which contradicts our initial assumption. (
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