
IMA Journal of Management Mathematics(2009)20, 395–409
doi:10.1093/imaman/dpn035
Advance Access publication on November 13, 2008

Equilibrium replenishment in a supply chain with a single distributor
and multiple retailers

KONSTANTIN KOGAN† AND YAEL PERLMAN

Departmentof Interdisciplinary Studies, Bar-Ilan University, Ramat-Gan, Israel

AND

SHARON HOVAV

Clalit Health Insurance, Department of Management, Tel-Aviv, Israel

[Received May 2007; accepted November 2007]

This paper addresses a problem encountered by a large-scale health service supply chain operating in
a periodic review mode. Due to the vital nature of the products it provides, the number and timing of
urgent orders are not limited. As a result, increasingly high transportation costs are incurred and the
problem is to select an inventory replenishment (review) period that minimizes the transportation cost.
Moreover, the supply chain involves multiple retailers which inevitably and independently respond to
any change in replenishment policy since it may affect their inventory costs. Such a relationship results
in a game between a distribution centre and retailers. Since the problem is intractable due to its scale
and stochastic nature, we combine a game theoretic approach with an empirical analysis. We show that
this system is predictable using equilibria and that the current replenishment equilibrium of the health
service supply chain is close to the Nash solution. Numerical analysis shows that the transportation costs
are cut if the distribution centre implements in reality its formal (Stackelberg) leadership by reducing
the replenishment period. However, this does not coordinate the supply chain and greater system-wide
savings are possible by increasing the replenishment period if the supply chain is vertically integrated or
the parties cooperate.

Keywords: inventory replenishment; supply chain management; gaming.

1. Introduction

We consider a supply chain which comprises a single distributor and multiple retailers. Two supply
modes, regular and urgent, characterize the system. A retailer places an order from the distribution
centre at regular time intervals imposed by the distributor. Thus, the inventories are reviewed and re-
plenished periodically. In case of a shortage, the retailer can place orders via the urgent mode. The
distributor (the supplier) has ample capacity and her warehouse induces a constant inventory cost which
is independent of the level of inventory handled. At the same time, transportation costs incurred by the
supplier very much depend on the retailer’s inventory policies. Thus, in this supply chain, the supplier
seeks to find a replenishment period which minimizes the transportation cost related to both regular
and urgent orders. The retailers, on the other hand, are interested in minimizing their inventory-related
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costs,thereby affecting the supplier’s goal. This situation is naturally described by the game theoretic
approach where the distributor competes with the retailers.

1.1 Motivating example

Clalit Health Services (Clalit), with an annual budget of NIS 13.2 [$3.3] billion, is the largest health care
organization in Israel. More than 30,000 employees are engaged in providing highly advanced medical
care to 55% of the Israeli population. With health care providers issuing 5 million prescriptions per year,
Clalit’s logistic operations deliver approximately 5000 types of items to the organization’s 14 hospitals,
1380 primary and specialized clinics and 400 pharmacies. Annual operating costs amount to NIS 68.8
[$17.2] million while transportation costs stand at NIS 9.2 [$2.3] million.

Clalit successfully maintains steady operating costs but transportation costs have been increasing.
Relative to operating costs, transportation costs reached 11.8% in 2003, 12.2% in 2004 and 13.3% in
2005. This increase is attributed to Clalit’s willingness to dispatch urgent supplies when shortages arise.
The transportation costs induced by urgent orders have reached 40% of the regular supply transportation
costs (NIS 5.6 [$1.4] million per year) and have become a major management concern.

There is a number of causes for the increase. First of all, Clalit distribution centres handle regular
supplies of products under a periodic review mode which allows the pharmacies to place as many urgent
orders as needed. Secondly, the competition between health care providers in general and pharmacies
specifically has resulted in increased frequency of deliveries—sometimes once a day or even twice a
day. The main contributor to such a competition is a high concentration of the pharmacies in every
city and thereby a significant likelihood that a customer who could not find a prescription drug in one
pharmacy will simply go to another one (even if the need for the drug is not urgent), rather than wait for
a day or two. The average value of the deliveries in these circumstances is about NIS 880 [$220] to NIS
1120 [$280] and includes only five to seven different items. Thirdly, since the pharmacies were being
charged according to total shipments per month regardless of the transportation frequency, they were
being encouraged to keep their inventories as low as possible.

In 2001, the distribution companies (which Clalit employed) changed this way of working since
their profits were being erased and the distribution charges became frequency dependent. More specifi-
cally, the distributors began to distinguish between regular deliveries, i.e. those planned in advance and
which are normally every 2 weeks, and urgent supplies, which must be carried out within a day or two.
Naturally, higher charges were imposed on urgent supply deliveries.

The change in transportation charges had a decentralizing effect on the two-echelon supply chain. On
the one hand, Clalit is interested in decreasing supply frequency since it is still responsible for about 60%
of transportation costs. On the other hand, the competition as well as high inventory holding costs induce
pharmacies to increase urgent order frequencies in response to less frequent regular supplies. Since
urgent orders are more expensive, this significantly affects the overall transportation costs the health
care company incurs. As a result, even though the pharmacies are a part of Clalit, the new transportation
charges (imposed on Clalit by its transportation subcontractors) along with the privilege of urgent orders
increase the impact the pharmacies have on the supply chain. This is to say, driven by their own goals
of minimizing inventory costs, the pharmacies reduce the way that Clalit dominates the chain.

Today, Clalit’s distribution centre directly supplies 350 pharmacies. About 75% of the pharmacies
are supplied every 14 days, 15% once a month (every 4 weeks) and about 10% every 7 days. The phar-
macies and the distribution centre are connected exclusively on an ongoing basis and orders are issued
electronically. The major challenge of Clalit’s distribution centre, which is a leader in the supply chain,
is to determine and implement an optimal review or replenishment period that will lead to minimized
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overall transportation costs with respect to the best response of the pharmacies (i.e. the followers) in
terms of regular and urgent orders. It is also important to understand the current position of the players
in terms of leadership in the supply chain: does the distribution centre really dominate (thus implement-
ing a Stackelberg strategy) or do the pharmacies succeed in imposing an independent (Nash) strategy on
the chain by means of urgent orders? What are the losses and implications associated with the current
position? These are the questions which motivated the research presented in this paper.

1.2 Literature review

Many authors have addressed various replenishment policies intended for either continuous or periodic
inventory review. The choice of which review policy to use depends on the corresponding costs as well
as practical and organizational considerations (see, e.g.Chiang & Gutierrez, 1996;Teunter & Vlachos,
2001;Rao,2003;Bollapragada & Rao, 2006).

Traditionally, and in contrast to our problem, most papers dealing with periodic review inventory
systems operating under regular and urgent orders assume that the review period is predetermined (for
further details see, e.g.Veinott,1966;Whittmore & Saunders,1977;Chiang & Gutierrez,1996;Teunter
& Vlachos, 2001;Chiang,2003;Bylka, 2005). Specifically,Veinott (1966) andWhittmore & Saunders
(1977) derive an optimal ordering policy only when regular and emergency lead times differ by one time
unit. They focus on a situation in which supply lead times are a multiple of a review period. Chiang &
Gutierrez (1996) andChiang(2003) assume a relatively large predetermined review period so that the
lead times can be shorter than the review period. (This assumption is similar to ours. In our study, since
the retailers are located relatively close to the distributor, the lead time is short.) They develop optimal
policies for regular and urgent orders at a periodic review.Teunter & Vlachos(2001) also presume that
the lead times can be shorter than the review period whose duration is predetermined. A recent work by
Bylka (2005) assumes that emergency orders arrive immediately (so that the lead time of a regular order
is equal to 1). The measure of effectiveness is the total (or average per period) expected cost, which
includes holding, shortages and both types of order costs. The typical feature of these studies is that
they allow only a very restricted (normally one or two) number of urgent orders per review period.

In this paper, we combine the game theoretic approach with empirical studies which makes it possi-
ble to account for an unlimited number of urgent orders per period. To the best of our knowledge, there
is no research related to the optimal review length for two supply modes. Moreover, only a few works
(seeFlynn & Garstka,1997;Rao,2003) analyse the optimal review or replenishment period for the
single supply mode.Flynn & Garstka(1997) develop a model where everyT periods a retailer observes
the current stock level and places orders for the nextT periods. They assume that the retailer orders a
sequence of deliveries and distinguish between review and delivery intervals. The review periodT that
they find minimizes the average cost per period. Flynn and Garstka note thatT should increase as order
set-up cost increases; it decreases as the holding and shortage costs as well as the variance in demand
increase.Rao(2003) compares two control policies: the periodic review (R, T) policy and the continu-
ous review, reorder point (Q, r ). He shows that an economic order interval from a deterministic analysis
can provide a good approximation to the optimalT .

As mentioned above, we optimize the replenishment period in a game context to take into account
conflicting goals set by the distributor, on the one hand, and multiple retailers, on the other. In such
a game, the distributor is a leader, who specifies first the length of the review periodT . The retailers
respond with regular and urgent order quantities.

Game theory has been extensively applied to supply chain management. A vast body of literature
is devoted to inventory coordination or stock-related games (for literature reviews see, e.g.Cachon &
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Netessine, 2004;Leng & Parlar, 2005). However, there are only a relatively small number of papers
that focus on supply chains comprising multiple retailers (see, e.g.Cachon,2001b;Wanget al.,2004).
Specifically,Cachon(2001b) studies the competitive and cooperative selection of inventory policies
and assumes that each location implements a continuous review policy, the demand for the product is
Poisson distributed and the supplier serves the retailers on a first come first serve basis. He shows that
while a Nash equilibrium for a set of reorder points exists, it does not necessarily lead to supply chain
efficiency. Thus, a competitive solution need not coincide with the global optimum.Wanget al. (2004)
study a system with one supplier and multiple retailers each with her own lead time and holding cost.
Each echelon uses a base-stock policy. Because the players are not cooperative and care only for their
own profit, the supply chain performance deteriorates. Several contracts for the system-wide optimal
cooperation are introduced.

A different setting is studied inCachon(2001a) where one retailer sellsN products with stochastic
demands and trucks with finite capacity are dispatched from a warehouse. There is a constant lead time
from the warehouse to the retailer. Three policies for dispatching are considered: full-service periodic
review, minimum quantity periodic review and continuous review. Cachon shows that continuous review
is less costly if the warehouse is close to the retailers. When the lead time is long, the advantage is
small.

In this paper, we focus on the replenishment period rather than the dispatching policies. The ware-
house is relatively close by and the retailers are able to issue an urgent order at any time and as many
times as needed. As a result, they are continuously disrupting the periodic replenishment strategy of
the distributor, which can be viewed as a constant replenishment period policy with continuous supply
adjustments. We show that the replenishment period shortens when (i) the supplier is the leader, i.e. the
Stackelberg strategy is employed, and (ii) the transportation cost along with the elasticity of the trans-
portation cost with respect to the replenishment period increases. All proofs of our theoretical results
are relegated to a mathematical appendix. Our empirical results are based on a case study carried out
in cooperation with Clalit. The transportation costs were obtained from a sample of 16 pharmacies. To
study the influence of a periodic review cycle on the transportation costs, the replenishment period for
these pharmacies was changed from the original 2 weeks to 3 and 4 weeks.

2. Problem formulation

Consider a distribution center of ample capacity which supplies products toN retailers at each replen-
ishment periodt of lengthT . The distributor has a large automated warehouse. The warehouse is never
completely filled up while inventory handling operations incur negligible variable costs compared to
the fixed cost of maintaining the warehouse. The cost of transportation to the retailers during periodT ,
C(T, Qt ), on the other hand, is significant and is incurred only by the distributor. The transportation
cost depends on the period lengthT and total order quantityQt =

∑N
n=1 qn

t , whereqn
t is the regular

order of retailern, n = 1, . . . ,N, at periodt . We assume that urgent orders depend on bothT andQt

andthus affectC(T ,Qt ), which will be studied empirically.
Since the overall number of products each retailer orders is overwhelming, similar to supply contr-

acts which specify the total purchase when dealing with multiple products (see, e.g.Anupinidi & Bassok,
1998), we consider an aggregate order over all items of retailern, qn

t , measured in monetary units.
Various researchers report that aggregating data in about 150–200 points normally result in less than
1% error in estimating the total transportation costs (Ballou,1992;Hause & Jamie,1981). In addition to
the regular orders, the distributor allows for special orders in case of emergency. Since these contingent
orders involve small quantities, they do not affect the retailers’ inventory costs. However, as mentioned

 at B
ar Ilan U

niversity on February 25, 2014
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/
http://imaman.oxfordjournals.org/


EQUILIBRIUM REPLENISHMENT WITH A SINGLE DISTRIBUTOR AND MULTIPLE RETAILERS 399

above, they do affect the transportation cost of the distributor,C(T ,Qt ), since special, smaller capacity
vehicles are employed to carry out urgent orders. This is to say, by increasing the length of periodT or
decreasing the frequency of supplies—both are the same—the distributor diminishes the transportation
cost of regular orders. This, however, causes the retailers to boost urgent orders required for the entire
periodT , thereby inducing additional costly transportation costs for the distributor. As a result, although
the supply chain is formally centralized, the situation reflects a classical non-cooperative game in which
the distributor is a leader, who sets first the length of the regular review periodT and the retailers
respond with regular and urgent order quantities. The distributor’s strategy in this game is referred to as
the Stackelberg solution.

2.1 The distributor’s problem

The distributor’s problem is to minimize her expected transportation cost per unit time:

min
T

Jd = lim
K→∞

1

K T
E

[
K∑

t=1

C(T, Qt )

]

(1)

s.t. T>0.

Notethat although orderQt is the total result of retailer decisions at periodt , the length of the periodT
is independent oft , as the distributor adopts a constant-period review policy.

2.2 The retailer’s problem

Let dn
i t be the customer demand rate for retailern at i th time unit of periodt . The demand is random

and characterized at each time uniti by probability densityfn(·) and cumulative distributionFn(·) with
meanµn andstandard deviationσn. Denote the demand forT time units at periodt as

dTn
t =

T∑

i=1

dn
i t (2)

andits density and cumulative functions asfnT (·) andFnT (·), respectively, with meanTµn andstandard
deviation

√
Tσn.

Theretailern problem is to minimize her expected inventory costs per unit time:

min
{qn

t }
Jn

r = lim
K→∞

1

K T
E

[
K∑

t=1

h+n (X
n
t )+ h−n (X

n
t )
−

]

, (3)

where
Xn

t is the retailern inventory level at the beginning of periodt ,
(Xn

t )
+ = max{0,Xn

t } and(Xn
t )
− = max{0,−Xn

t },
h+n andh−n arethe unit surplus and backlog costs per time unit, respectively.

The inventory dynamics are described by the following balance equation:

Xn
t+1 = Xn

t + qn
t − dnT

t , qn
t >0, t = 1,2, . . .. (4)
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In what follows, we derive the Stackelberg strategy by first solving the retailer’s problem and then
substituting the solution into the distributor’s problem to find an equilibrium review period. This strategy
corresponds to the fact that the distributor first sets a constant replenishment period, then in response
the retailers set regular and urgent orders at each period.

3. Optimal retailer’s response

According to the Stackelberg strategy, the best retailern response is sought for a givenT . This is
accomplished by calculating the expectation in (3):

Jn
r = lim

K→∞

1

K T

K∑

t=1

[∫ Xn
t +qn

t

−∞
h+n (X

n
t + qn

t − D) fnT (D)dD −
∫ ∞

Xn
t +qn

t

h−n (X
n
t + qn

t − D) fnT (D)dD

]

.

(5)

Next, applying the first-order optimality condition to a single-period term of (5) (i.e. differentiating a
single term of (5) and setting it at zero), we obtain the single-period newsvendor-type optimal policy

FnT (X
n
t + qn

t ) =
h−n

h−n + h+n
. (6)

Denotethe base-stock value bysnT ,

Xn
t + qn

t = snT , (7)

suchthat FnT (snT ) =
h−n

h−n +h+n
. Retailern then orders up to this stock levelsnT if the current level of

inventory is less thansnT , otherwise she does not order at all. Assuming that initial inventory is less than
or equal tosnT , we observe that if this single-period solution (which is myopic as it ignores possible
effects of the other periods) is applied at each period, thenXn

t+1 6 snT for eacht . This argument is then
used in the following theorem (detailed proof can be found in, e.g.Zipkin, 2000).

THEOREM 1 The myopic stationary base-stock policy with base-stock levelsnT is optimal for multi-
period problem (3–4).

We thus determined the best retailer’sn response,qn
t = snT −Xn

t , to any replenishment periodT set
by the distributor. In practice, retailers are not always able to calculate their unit backlog costs. However,

the value ofw = h−n
h−n +h+n

which is referred to as the service level (i.e. 1−w is the probability of backlog

P(dTn
t >snT ) = 1− w) is frequently used by the management as a goal to be met. The higher the goal

(the service level) set, the greater the base-stock level and thus the lower the risk of backlogs induced
by random demands.

4. Stackelberg strategy

Given initial inventory levels, the retailers’ orders are deterministic at the first period. Therefore, calcu-
lating the expectation in (3) we find that

Jd = lim
K→∞

1

K T
E

[
K∑

t=1

C(T, Qt )

]

= lim
K→∞

1

K T

{

C(T, Q1)+
K∑

t=2

E[C(T, Qt )]

}

. (8)
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Let fQ(·) andFQ(·) bethe total orderQt densityand cumulative distributions, respectively. Then, (8)
can be presented as

Jd = lim
K→∞

1

K T

{

C(T, Q1)+
K∑

t=2

∫ ∞

−∞
C(T, ξt ) fQ(ξt )dξt

}

. (9)

Thedistribution of the total order,fQ(ξt ), can be determined with the aid of Theorem1. Indeed, from
(4) and (7), we have

Xn
t+1 = snT − dnT

t , Xn
t+1 = snT − qn

t+1

andthus

qn
t+1 = dnT

t , t = 1,2, . . . .

Consequently, the distribution of the optimal ordersqn
t , t > 2 (for a replenishment period of lengthT),

is identical to the demanddnT
t distribution. Since the demand distribution per time unit is assumed to be

independent of time, i.e.dnT
t is stationary, the distribution of the total order

Qt =
N∑

n=1

qn
t =

N∑

n=1

dnT
t , t > 2,

is stationary as well with meanT
∑N

n=1µn andstandard deviation
√

T
∑N

n=1 σ
2
n . Since the problem

data are stationary, (9) simplifies to

Jd= lim
K→∞

{
C(T, Q1)

K T
+

1

K T

K∑

t=2

∫ ∞

−∞
C(T, ξt ) fQ(ξt )dξt

}

= lim
K→∞

{
C(T, Q1)− E[C(T, Q)]

K T
+

1

T

∫ ∞

−∞
C(T, ξ) fQ(ξ)dξ

}
.

Assume that the probability of extremely high demands is negligible and a much stretched replenishment
period results in enormous transportation costs due to urgent orders. This, along with the constraintsT >
0 andQt > 0, implies that the solution sets forT and Qt arecompact. Consequently, the limit in the
last expression results in

Jd =
1

T

∫ ∞

−∞
C(T, ξ) fQ(ξ)dξ. (10)

The equilibrium is then obtained by assuming thatfQ(·) dependson T and by applying the first-order
optimality condition with respect toT :

∫ ∞

−∞

(
∂[C(T, ξ) fQ(ξ)]

T∂T
−

C(T, ξ) fQ(ξ)

T2

)
dξ = 0. (11)

DenotingA =
∫∞
−∞

( ∂[C(T,ξ) fQ(ξ)]
T∂T − C(T,ξ) fQ(ξ)

T2

)
dξ anda solution of (11) in T by α, we conclude with

the following theorem.

THEOREM 2 If ∂A
∂T > 0 andα > 0, then the replenishment periodT∗ = α andthe base-stock level

s∗nT = snα with order quantityqn∗
t = snα − Xn

t for t = 1,2, . . ., n = 1, . . . ,N constitute a unique
Stackelberg equilibrium in the distributor/retailer replenishment game.
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5. Nash strategy

To compare the effect of leadership on the game between the supply chain parties, we next assume that
there is no leader in the chain. This implies that the distributor and the retailers make their decisions
simultaneously so that in contrast to the Stackelberg strategy, the distributor’s objective function (1)
is minimized as though the total order quantityQt (andhence, fQ(·)) does not depend onT . Then,
applying the first-order optimality condition to the objective function (10), we obtain

∫ ∞

−∞

(
∂C(T, ξ)

T∂T
−

C(T, ξ )

T2

)
fQ(ξ)dξ = 0. (12)

IntroducingB =
∫∞
−∞

( ∂C(T,ξ)
T∂T −

C(T,ξ)
T2

)
fQ(ξ)dξ and denoting a solution of (12) inT byβ, we conclude

with the following theorem.

THEOREM 3 If β > 0 and ∂B
∂T > 0, then the replenishment periodT∗ = β andthe base-stock level

s∗nT = snα with order quantityqn∗
t = snβ − Xn

t for t = 1,2, . . ., n = 1, . . . ,N constitute a Nash
equilibrium in the distributor/retailer replenishment game.

6. Theoretical results for a normal distribution of the demand

As discussed above, independent optimization of the retailers’ responses results in the distribution of
the optimal ordersqn

t (for a replenishment period of lengthT) identical to the demanddnT
t distribution.

Assuming that the demand distribution is normal and its mean is greater than its three standard deviations
(to ensure that the probability of negative demands is negligible), we observe thatfnT (·) and FnT (·)
arenormal density and cumulative functions with meanTµn andstandard deviation

√
Tσn. Then the

total optimal order,Qt , is characterized by the normal distribution as well. Note that if the demand is
independent at each time unit (i.e. stationary), then according to the central limit theorem, summation
of independent demands overT time units tends to the normal distribution even if the demand at each
time unit is not normal. In other words, the normality assumption of this section is not very restricting.

Our first observation with respect to the normal distribution is related to the retailers’ objective
functions. WhenT = 1, the standard deviation of demanddn per time unit isσn. WhenT increases,

the standard deviation reduces,
√

T
T σn =

σn√
T
. Therefore,similar to the pooling demand effect widely

employed in supply chains, the retailer’s expected inventory cost per time unit is a monotonically de-
creasing function ofT (see Fig.2). This is shown in the following proposition by utilizing the standard
normal density functionΦ(·).

PROPOSITION 1 Let fnT (·) be the normal density function with meanTµn and standard deviation√
Tσn. Then the greater the replenishment periodT , the lower the retailer’s expected inventory cost per

period,Jn
r , so that∂ Jn

r
∂T < 0 and ∂

2Jn
r

∂T2 > 0.

Thefollowing observation is related to the Nash solution. Considering now the distributor’s costJd,
thebest response of the distributor,T = T R(snT ), as well as of retailern, snT = sR

nT (T), we obtain the
following properties.

PROPOSITION 2 Let fnT (·) be the normal density function with meanTµn and standard deviation√
Tσn. Then the distributors cost and, hence, best distributor’s response do not depend on retailern base-

stock level,∂T R

∂snT
= 0. On the other hand, the best retailern response does depend on the replenishment

period: the greater the replenishment periodT , the larger the base-stock level
∂sR

nT (T)
∂T > 0.
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Thereare two important conclusions related to Proposition2. The first conclusion is concerned with
the supply chain performance and thereby the corresponding centralized supply chain. If the supply
chain is vertically integrated with one decision maker responsible for setting both a replenishment period
and a base-stock level for each retailer, then the centralized objective function is a summation of all costs
involved:

J(T) = Jd+
∑

n

Jrn .

Thedistributor’s costJd is independent of the base-stock level, as shown in Proposition2. Therefore,
applying the first-order optimality condition toJ(T) with respect to eitherqn

t or snT , we obtain (6). This
implies that the condition for the Nash base-stock level is identical to the system-wide optimality con-
dition. Next, to find the system-wide optimality condition for the replenishment period, we differentiate
J(T) with respect toT , which, when taking into account (12) and (A.1), results in

∂ J(T)

∂T
=
∫ ∞

−∞

(
∂C(T, ξ )

T∂T
−

C(T, ξ )

T2

)
fQ(ξ)dξ

−
σn

2
√

T3

[∫ s∗n

−∞
h+n (s

∗
n − z)Φ(z)dz−

∫ ∞

s∗n

h−n (s
∗
n − z)Φ(z)dz

]

= 0. (14)

Comparing (14) and (12), we find the following property.

PROPOSITION 3 Let ∂B
∂T>0 and fnT (·) be the normal density function with meanTµn andstandard

deviation
√

Tσn. The system-wide optimal replenishment period and base-stock level are greater than
the Nash replenishment period and base-stock level, respectively.

Proposition3 sustains a well-known observation that vertical competition causes the supply chain
performance to deteriorate. Similar to the double marginalization effect, this happens because the re-
tailers ignore the distributor’s transportation cost by keeping lower, base-stock inventory levels. The
distributor, on the other hand, ignores the retailer’s inventory costs when choosing the replenishment
period. Figure2 illustrates the effect of vertical competition on the supply chain.

Theorem3 derives conditions when Nash equilibria exist. The second property, which is readily
derived from Proposition2, is related to the uniqueness of the Nash solution.

PROPOSITION 4 Let fnT (.) be the normal density function with meanTµn and standard deviation√
Tσn. The Nash equilibrium (T∗, s∗nT ) determined by Theorem3 is unique.

7. Empirical results and numerical analysis

7.1 Closed-form equilibrium expressions under normal demands

Let us denoteµ =
∑N

n=1µn and σ =
√∑N

n=1 σ
2
n . Then,µQ = T

∑N
n=1µn = µT and σQ =√

T
∑N

n=1 σ
2
n = σ

√
T . Thus, the total order probability density function is

fQ(ξ) =
1

√
2πσQ

e−(ξ−µQ)
2/2σ2

Q =
1

√
2Tπσ

e−(ξ−µT)2/2Tσ2
.

Guidedby our empirical results, which are discussed below, we consider an exponential function of the
transportation cost,C(T, Q) = aebT Q. Substituting this into (11), we obtain an explicit closed-form
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expression for Stackelberg equilibrium replenishment periodT∗ = α:

∫ ∞

−∞

a
√

2πσ

[
∂(ebαξα−0.5 e−(ξ−µα)

2/2ασ 2
)

−

ebαξ e−(ξ−µα)
2/2ασ 2

α2.5

]

dξ = 0,

i.e.
∫ ∞

−∞

a

α1.5
√

2πσ
ebαξ−(ξ−µα)22ασ 2

[

bξ +
2(ξ − µα)µ

2ασ 2
+
(ξ − µα)2

2α2σ 2
−

1

α

]

dξ = 0. (15)

Similarly, substituting the normal distribution and exponential cost function into (11), we find an
expression for the Nash equilibrium replenishment periodT∗ = β:

∫ ∞

−∞

a
√

2πσ
ebβξ−(ξ−µβ)2/2βσ 2

[
bξ

β
−

1

β2

]
dξ = 0. (16)

Both (15) and (16) are numerically studied next.

7.2 Empirical results

The transportation costs were obtained from a sample of 16 pharmacies, which are being supplied every
14 days on a regular basis exclusively from Clalit’s primary distribution centre. The base-stock policy
was determined according to service-level definition and demand forecasts. Pharmacists place their or-
ders using software that computes replenishment quantities for every item with respect to the base-stock
level. The pharmacist electronically sends the completed order to the distribution centre for packing and
dispatching. If there is a shortage or expected shortage before the next planned delivery, the pharmacist
can send an urgent order to be delivered not later than two working days from the time of the order.

An external subcontractor (according to the outsourcing agreement) delivers the orders to the phar-
macies. The contractor schedules the appropriate vehicle (trucks in case of regular orders and mini-
trucks for urgent orders) according to the supply plans for the following day. Delivery costs depend on
the type of the vehicle used (track or mini-track) and the number of pharmacies to be supplied with the
specific transport.

To estimate the influence of a periodic review cycle on the transportation costs (planned and urgent
deliveries), the replenishment period for the 16 pharmacies was changed from the original 2 weeks to 3
and 4 weeks. This resulted in a total of 18 replenishment cycles representing 34 working weeks. Monthly
sales of the selected pharmacies varied from NIS 200,000 [$50,000] to NIS 544,000 [$136,000]. Each
order that was sent from a pharmacy was reported, and each transport, with every delivery on it, in-
cluding invoices that were paid to vehicle contractor was reported. The data, processed with SPSS
non-linear regression analysis, indicate that the resultant parameters of the transportation cost function
area = 4463,b = 0.0000163, while both parameters of the selected cost function are statistically
significant at levels ofP value much smaller than the accustomed maximum 5% (0.05) requirement.
Specifically, the significance levels ofa andb are 3.0653×10−12 and1.08651×10−09, respectively.

7.3 Numerical analysis

The goal of our numerical analysis is to check whether this supply chain is predictable using equilibria
and how it is affected by the distributor’s leadership. In other words, we compare the objective functions
(1) and (3), as well as the effect on the overall supply chain (the sum of (1) and (3)). Specifically, with
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distributor leadership, its expected cost (10) is Jd1 = 1
α

∫∞
−∞C(α, ξ) fQ(ξ)dξ (see Theorem2), while

without leadership (see Theorem3) it is Jd2 = 1
β

∫∞
−∞C(β, ξ) fQ(ξ)dξ. Sinceα is found by minimizing

the entire objective functionJd1, whileβ assumes that the normal probability function is independent of
the periodT , the distributor obviously is better off if she is the leader and therefore decides first rather
than when the decision is made simultaneously (no leaders).

Similarly, retailern expected cost under the distributor leadership is

Jn
r1 =

1

α

[∫ snα

−∞
h+n (snα − D) fnα(D)dD −

∫ ∞

snα

h−n (s
−
nαD) fnα(D)dD

]
,

while under no leadership it is

Jn
r2 =

1

β

[∫ snβ

−∞
h+n (s

−
nβD) fnβ(D)dD −

∫ ∞

snβ

h−n (s
−
nβD) fnβ(D)dD

]

.

The numerical results of our empirical studies show that the current equilibrium of Clalit’s supply chain,
which is an outcome of many adjustments it has undergone during many years of operations, is close
to and positioned in between both the Stackelberg and the Nash equilibria. This is in contrast to the
skepticism of many practitioners who believe that a theoretical equilibrium is hardly attainable in real
life. Specifically, the equilibrium replenishment period under equal competition is about 16 days, the
current replenishment period is 14 days and the equilibrium under the distributor’s leadership is 11
days. Figure1 presents the equilibria over the distributor’s transportation cost function.

The Stackelberg equilibrium demonstrates the power the distributor can harness as a leader. The
economic implication of harnessing the distributor’s power is about 20 NIS per day [$4 per day] for
the sampled supply volumes. The annual significance (which is an estimate based on extrapolating our
results), in terms of the overall supply chain, is NIS 1.4 [$0.35] million or 14% of the total delivery costs.
Interestingly enough, the current equilibrium is closer to the Nash replenishment period rather than to
the Stackelberg which sustains Clalit’s managerial intuition that its distribution centres do not succeed
in taking full advantage of their power over the pharmacies. There are also pragmatic reasons/benefits
for the current period being 14 days rather than 11 (according to the Stackelberg strategy) related to the
order for each pharmacy being placed on the same day of the working week.

Figure2 presents the results of the calculation for the supply chain as a whole, i.e. including the
retailers’ inventory management costs and the distributor’s transportation costs.

FIG. 1. The distributor’s transportation cost,Jd (NIS), as a function ofT (days) (β = 16 andα = 11—Nash and Stackelberg
equilibrium replenishment periods, respectively).
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FIG. 2. Supply chain costs (TC—total supply chain cost, NIS;Jr—total retailers cost, NIS;Jd—distributor’s transportation cost,
NIS; T ′—system-wide optimal period, days;β = 16 andα = 11—Nash and Stackelberg equilibrium replenishment periods,
respectively).

In Fig. 2, the total costs for the Stackelberg, current and Nash strategies as well as the system-
wide optimal (global) solution appear as dots on the total costs curve. From this diagram, it is easy to
observe the effect of the total inventory-related cost on the entire system performance. Specifically, we
can see that if the supply chain is vertically integrated or fully centralized and thus has a single decision
maker who is in charge of all managerial aspects, the system-wide optimal replenishment period is
18 days versus the current equilibrium of 14 days. The significance of this gap (which agrees with
Proposition4) is that more than 3 million NIS could be saved if the system were vertically integrated. If
the distributor attempts to locally optimize (the Stackelberg strategy), this would lead to annual savings
in transportation costs of only 1.4 million NIS. However, the significance of such an optimization for
the supply chain as a whole is a ‘loss’ of 8 million NIS. This is the price to be paid if the supply chain
is either decentralized or operates as a decentralized system.

Finally, to understand the sensitivity of the results, particularly of the replenishment periods to the
transportation cost, we next conduct a sensitivity analysis.

7.4 Sensitivity analysis

Elasticityζ of the transportation cost with respect to the replenishment periodT , ζ = bQT, shows the
relative change in transportation cost when the length of the replenishment period changes by 1%. An
important question relates as to what extent the transportation costs should increase, or the characteristic
parameterb (elasticity per $1 and 1 day) amplify so that the distributor will need to reconsider her supply
policy from periodic review towards continuous review.

Specifically, if the elasticity per $1 and 1 day changes, say three times fromb = 0.0000163 to
b = 0.0000489, then the Nash period falls 1.77 times and the Stackelberg period decreases 1.83 times,
attaining 7 and 5 days, respectively (see Fig.3 for detailed sensitivity of the equilibrium periods with
respect tob). On the other hand, in terms of the elasticity of the transportation cost, the change required
is less than that forb. We observe this by first plugging into the equation forζ ,

ζ = bQT = 0.0000163QT,

the current average value ofQ and currentT, to find thatζ = 0.4. Next, we find thatζ = 0.54 when
settingb = 0.0000489 (if we increase it three times),T equal to the corresponding Nash valueβ
from Fig. 3 and Q equal to the total average order whenT = β. Thus, ifb increases three times, the
elasticity with respect to the Nash period increases only 1.62 times. Similarly, we find for the Stackelberg
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FIG. 3. Sensitivity analysis:b as a function ofβ andα.

period, i.e.T = α, thatζ = 0.27 and the elasticity increases only 0.84 times. This is to say that when
reconsidering review policy from periodic to continuous, the transportation costs must significantly
increase, while the elasticity with respect to the replenishment period does not need to increase to such
an extent.

8. Conclusions

This research was motivated by increasingly high transportation costs incurred by a large health service
provider which is part of a supply chain consisting of multiple retailers (pharmacies) and a distribution
centre. The costs were attributed to unlimited urgent orders that the retailers could place in the system.
Management’s approach to handling this problem was to reduce the replenishment period or even re-
consider the policy from periodic to continuous-time review. The latter in the current conditions would
simply imply daily (regular) product deliveries.

For the case of a normal demand distribution, we show that similar to the pooling demand effect
widely employed in supply chains, the retailer’s expected inventory cost per time unit is a monotoni-
cally decreasing function of the replenishment period. Furthermore, using the game theoretic approach
we find that the distributor’s cost and, hence, optimal distributor’s response do not depend on the re-
tailer’s base-stock level. On the other hand, the optimal retailer’s response does depend on the replen-
ishment period: the greater the replenishment period, the larger the base-stock level. As a result, the
Nash equilibrium is unique and the system-wide optimal replenishment period and base-stock level are
greater than the Nash replenishment period and base-stock level, respectively.

Due to the large scale of the supply chain, its stochastic character and urgent mode of orders, the
choice of an optimal replenishment period is an intractable problem. To overcome this in our study, we
combined the game theoretic approach with an empirical analysis. As a result, closed-form expressions
for Nash and Stackelberg solutions were derived. A numerical analysis of these solutions shows that
if a distributor imposes her leadership on the supply chain, i.e. acts as the Stackelberg leader, then the
replenishment equilibrium period is reduced. This makes it possible to cut high transportation costs.
However, these costs must be much higher in order for the distributor to reconsider her review policy
from periodic to continuous. Moreover, both theoretical and empirical studies show that if instead an
imposed leadership on the supply chain, it is vertically integrated or the parties cooperate, then the
potential savings in overall costs are much greater. In such a case, the replenishment period must increase
towards the system-wide optimal period rather than decrease or transform into a continuous review
policy. Thus, in the short run, imposing leadership by reducing the replenishment period may cut high
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transportationcosts. However, in the long-run, greater savings are possible if, e.g. the vendor managed
inventory approach is adopted by the retailers or imposed on the retailers by the health provider. In such
a case, a distribution centre will decide when and how to replenish inventories and thus the system will
become vertically integrated with respect to transportation and inventory considerations. This illustrates
the economic potential in cooperation and a total view of the whole supply chain.
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Appendix

Proof of Theorem2: The proof immediately follows from the first-order optimality condition (8) and

Theorem1. The equilibrium is unique if objective function (1) is strictly convex inT , i.e. ∂
2Jd
∂T2 > 0,

which is ensured by∂A
∂T > 0. �
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Proof of Theorem3: First note that∂B
∂T > 0 ensures convexity of the distributor’s cost, while the

newsvendor type of objective (5) is evidently convex inqn
t aswell. If these conditions hold, then there

must exist at least one simultaneous solution of the systems (12) and (6) (see, e.g.Debreu,1952), which
if positive constitutes a Nash equilibrium for the distributor/retailer replenishment game. �

Proof of Proposition1: With respect to Theorem1, retailern expected cost is

Jn
r =

1

T

[∫ snT

−∞
h+n (s

−
nT D) fnT (D)dD −

∫ ∞

snT

h−n (s
−
nT D) fnT (D)dD

]
.

Usingthe fact thatfnT (D) = 1√
Tσn

Φ
( D−Tµn√

Tσn

)
andintroducing a new variablez,

z=
D − Tµn√

Tσn
,

aswell as a standardized base-stock levels∗n =
snT−Tµn√

Tσn
, the expected cost takes the following form:

Jn
r =

σn√
T

[∫ s∗n

−∞
h+n (s

∗
n − z)Φ(z)dz−

∫ ∞

s∗n

h−n (s
∗
n − z)Φ(z)dz

]

. (A.1)

Differentiating this expression with respect toT , we immediately observe that∂ Jn
r

∂T < 0 and ∂
2Jn

r
∂T2 > 0,

asstated in this proposition. �

Proof of Proposition2: First note that neitherJd nor its derivative, which is the left-hand side of (11),
denoted byB, explicitly depends onsnT . Furthermore, according to Theorem1, no matter what base-
stock levelsnT we choose, the quantity that retailern orders has the same distribution, which depends
only on demand. Thus, a given replenishment periodT , fQ(·), does not depend on the base-stock policy
snT employed. This is to say thatJd andB areindependent ofsnT . However, if B does not depend on

snT , then the best distributor’s responseT = T R(snT ) doesnot depend onsnT , i.e. ∂T R

∂snT
= 0.

Thebest retailer’s response is determined with the standardized base-stock level,snT = sR
nT (T) =

Tµn +
√

Tσns∗n (seeProposition1), and thus,

∂sR
nT (T)

∂T
= µn +

1

2
√

T
σns∗n > 0,

asstated in the proposition. �

Proof of Proposition3: Let us substituteT in (12) with the Nash periodT = β. Then, the first term
in (12) vanishes as it is identical toB from (11), while the second term is negative, i.e.∂ J(β)

∂T <0. Since

both ∂B
∂T > 0 and− ∂

2Jn
r

∂T2 > 0 (see Proposition1), ∂ J(T)
∂T increasesif T increases and thus (12) holds

only if the system-wide optimal periodT > β.
Finally, it is shown in Proposition2 that ∂snT

∂T
> 0, i.e. if T > β, thensnT > snβ . �

Proof of Proposition4: The proof immediately follows from Proposition2 and Theorem3. Indeed,

the two best response curvesT = T R(snT ) andsnT = sR
nT (T) canintersect only once if∂T R

∂snT
= 0 and

∂sR
nT (T)
∂T > 0, i.e. a solution determined by Theorem3 is unique. �
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