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Abstract: This article discusses a two-player noncooperative nonzero-sum inspection game. There are multiple sites that are
subject to potential inspection by the first player (an inspector). The second player (potentially a violator) has to choose a vector of
violation probabilities over the sites, so that the sum of these probabilities do not exceed one. An efficient method is introduced to
compute all Nash equilibria parametrically in the amount of resource that is available to the inspector. Sensitivity analysis reveals
nonmonotonicity of the equilibrium utility of the inspector, considered as a function of the amount of resource that is available to
it; a phenomenon which is a variant of the well-known Braess paradox. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60:
125–140, 2013

Keywords: inspection games; resource allocation; computing nash equilibria

1. INTRODUCTION

Inspection games model situations where an inspector
verifies that one or more agents that are subject to inspec-
tion (denoted hereafter inspectees) follow some rules or
regulations which were agreed on by all parties. Also, the
inspector’s verification process is defined in this agreement.
Typically, the inspector has limited resources, so this verifi-
cation can only be partial. A mathematical analysis of these
games allows the understanding of inspection processes,
where agents are strategic and rational. More importantly,
the analysis of these games can also help with design of
efficient inspection processes. Because the inspector and the
inspectees (that is, the agents) each optimize its own utility,
these processes should be modeled as games.

An extended summary of the literature on inspection games
is available in Ref. [5]. Here, we will review a few of the two
person inspection games that are related to this article, and
some of the inspection games that have recently appeared in
the literature.

In Ref. [9], Hohzaki et al. considered a (single-shot) mul-
tistage two-person zero-sum game. Each player has a finite
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number of opportunities to act, and it does not know the his-
tory of actions taken by its opponent. The inspector decides
whether to inspect or not, and the inspectee decides whether
to violate or not. The game ends when the inspectee is cap-
tured or when the preplanned period expires. Hohzaki et al.
developed dynamic programming formulation to exhaust
equilibrium points on a strategy space of each player.

In Ref. [8], Hohzaki considered a multistage two-person
zero-sum stochastic game, where the inspectee decides how
much contraband to smuggle. A closed-form equilibrium is
derived for this specific case.

In Ref. [7], Haphuriwat et al. considered a two-person
nonzero-sum sequential game. The effects of inspection and
retaliation on the inspectee’s decision were tested. Results
show that unless the inspector imposes high retaliation costs
on the inspectee, 100% inspection is likely to be needed, and
deterrence with partial inspection may not be achievable in
practice (even though it is possible in theory).

In Ref. [13], Xiaoqing et al. considered a two-person
nonzero-sum game, where the inspectee is a (potentially)
polluting firm. The authors explored the effects of subsidies,
penalties, and other policy variables on implementation of
cleaner production.

In Ref. [5], Deutsch et al. considered an inspection game
between a single inspector whose inspection resource is con-
strained and multiple independent inspectees. The authors
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derived all Nash equilibria solutions for this game and
discussed their properties.

This article focuses on a special case of the game formu-
lated in Ref. [5]. Specifically, it considers a nonzero-sum
inspection game between a single inspector and a single
inspectee. There are multiple sites where the two players
act, and both of them have limited resources. The model of
Ref. [5] can be viewed as a two player game, where there
is a “coordinator” that determines the actions of the multi-
ple independent inspectees, and has sufficient resources to
enable violation in all of the sites. Such a model can be used
to describe many real-world scenarios, for example an owner
of multiple (potentially polluting) plants, who decides which
of its plants will comply with the pollution policies, and to
what extent.

In this article, in addition to the global resource limitation,
the inspector has to adhere to local limitations on the amounts
of resource it can allocate to the inspection of the various sites.
These additional local constraints make the analysis of the
game more challenging. Nevertheless, we show how to com-
pute all Nash equilibria solutions of this game in an efficient
way. Sensitivity analysis of the Nash equilibria with respect
to the inspector’s available resource reveals a counterintu-
itive phenomenon which is a variant of the Braess Paradox
Ref. [4]: the inspector’s payoff function is not monotonically
increasing in its resource.

Two-person nonzero-sum inspection games have been
modeled using different approaches in previous work. In
Ref. [11], the game has a finite number of “suspicious events,”
where the inspectee can violate. The inspectee can violate
only once. The inspector may inspect a finite number of times,
and it chooses which events to inspect. Also, the inspector can
announce its strategy in advance, and may compensate the
inspectee in case there is no violation. In Ref. [12], a similar
model is introduced with a partition of the events to those in
which the inspector can inspect and others in which it is not
allowed to do so. In Ref. [3], the authors develop methods to
inspect whether containers contain suspicious objects. They
formulate an LP model to determine the optimal strategy of
inspecting the contents of containers and deciding whether
they are “good” or “bad.”

In Ref. [2], there are two models related to the model of this
article. The first model formulates a two-player inspection
game where each one of the players picks one out of multi-
ple sites. In the second model, the decisions of the inspector
are different. The inspector’s budget is given by an integer
number (greater or equal to one), and it has to decide how
much resource to allocate to each site, where there are no
limitations on the amounts of resource that can be allocated
to each site. In this article, the amount of resource available
to the inspector is a real number, and the inspector has to
adhere to site-specific bounds when allocating its resource.
The inspectee has to choose whether to violate the regulations

or not. If it decides to violate, then it has to select a vector
of violation probabilities over the sites, such that the sum of
these probabilities do not exceed the value of one. Also unlike
Ref. [2], we are interested in computing all Nash equilibria.

The article is organized as follows. Section 2 formulates
the inspection game and defines Nash equilibria. Section
3 establishes the existence of Nash equilibria and provides
efficiently computable explicit expressions for all of them.
Section 4 conducts sensitivity analysis and demonstrates how
the inspector’s amount of resource affects the Nash equilibria
solutions. The proofs of results in Sections 2–4 appear in the
Appendix. Section 5 illustrates the results through a numer-
ical example. Finally, Section 6 concludes with a summary
and directions for future research.

2. MODEL FORMULATION

This article concerns an inspection game between an
inspector and an inspectee, denoted I and V , respectively.
There is a set N ≡ {1, . . . , n} of sites where the inspector and
the inspectee may have conflicting interests. The inspectee
has to choose a vector of violation probabilities (whose sum
do not exceed one), and the inspector has to determine the
allocation of its inspection resources over the sites to detect
the violations.

When the inspector has access to unlimited resources at no
cost or when it has no resources at all, the problem becomes
trivial. So, the inspector is assumed to have a limited amount
of inspection resource, B > 0. The inspector has to decide
on the amounts x1, . . . , xn to be allocated, respectively, to the
inspection of the sites, where each such amount is limited
from above. So, the inspector has to select a vector from

X ≡
{

x = (x1, . . . , xn) ∈ IRn : 0 ≤ xi ≤ αi for i ∈ N

and
∑
i∈N

xi ≤ B

}
, (1)

where α1, . . . , αn and B are given positive numbers that sat-
isfy

∑
i∈N αi ≥ B (because otherwise the global resource

limitation is redundant). On the other hand, the inspectee has
to decide on a vector of violation probabilities whose sum
is constrained not to exceed one, that is, it can violate with
certainty in no more than a single site. Thus, the inspectee
has to determine a vector from:

Y ≡
{

y = (y1, . . . , yn) ∈ IRn : yi ≥ 0 for i ∈ N

and
∑
i∈N

yi ≤ 1

}
. (2)
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Here, yi = 1, yi = 0 and 0 < yi < 1 mean, respectively, full
violation, full compliance, and partial compliance at site i.

The utility functions of I and V depend on (x, y) ∈ X×Y

and are expressed by:

UI (x, y) ≡ −
∑
i∈N

yi(di − cixi), (3)

and

UV (x, y) ≡
∑
i∈N

yi(ai − bixi), (4)

respectively, where the quintuples (ai , bi , ci , di , αi) for i ∈ N

are given and the αi’s satisfy

αi ≤ di

ci

, for all i ∈ N , (5)

the latter expresses the assumption that no matter what
amount of resource the inspector deicides to invest, it will
never cause its utility function as defined in (3) to be positive.
Also, the confrontation at each site should cause nonnegative
profit to the inspectee. However, we can assume (and we
will demonstrate) that when the return from violation in site
i ∈ N is negative, then the inspectee decides to cooperate, so
a similar assumption for αi and ai

bi
for each i ∈ N is unnec-

essary. The parameter ai represents the inspectee’s incentive
to violate in site i, the parameter bi represents the inspectee’s
penalty from violating in site i if inspected, the parameter
di represents the inspector’s penalty for not inspecting site i,
and the parameter ci represents the inspector’s incentive to
inspect site i.

A joint set of actions (x∗, y∗) ∈ X × Y is a Nash equilib-
rium if no player can benefit from deviating unilaterally from
its strategy, that is,

UI (x∗, y∗) = max
x∈X

UI (x, y∗) (6)

and

UV (x∗, y∗) = max
y∈Y

UV (x∗, y). (7)

We say that x∗ is a best response to y∗ if it satisfies (6) and
similarly y∗ is a best response to x∗ if (7) is satisfied.

Let IR⊕ ≡ {z ∈ IR : z ≥ 0}, and a, b, c, d , α ∈ IRn
⊕. Sup-

pose x∗ ∈ X. If a = 0, then every y ∈ Y is an inspectee’s best
response. Otherwise, if b = 0 and ai > 0 for some i ∈ N ,
then the inspectee’s best response is

∑
j∈arg maxi∈N {aj } yj = 1

and yi = 0 otherwise. If cT α = 0, then every x ∈ X is a best
response for the inspector. Further, if α = 0 (regardless of
c), then x = 0 is a best response for the inspector. To avoid
such degenerate situations, it is assumed throughout that

ai , bi , ci , di , αi > 0 for all i ∈ N . (8)

As Nash equilibria with the inspector’s utility function
given by (3) are invariant with respect to the di’s, henceforth,
inspector’s utility function will be given by

Û I (x, y) ≡
∑
i∈N

yicixi for all (x, y) ∈ X × Y , (9)

and it will express the “reduced cost” for the inspector rather
than cost. Throughout, we shall consider the game defined
by (1),(2),(9),(4), (5) and (8).

The following proposition establishes the existence of
Nash equilibria for the game.

PROPOSITION 1: The game has Nash equilibria.

The next section computes all Nash equilibria of the game.

3. DETERMINING ALL NASH EQUILIBRIA

This section computes all Nash Equilibria of the game
defined by (1), (2), (9), (4), (5) and (8).

For convenience, it is assumed henceforth that the ai’s and
the ci’s are, respectively, distinct, and the sites are ordered as
follows:

a1 > a2 > . . . > an > an+1 ≡ 0. (10)

When there is only one site, the inspectee will cheat with
probability 1 if this site has a positive return and will comply
with probability 1 if it has a negative return. Hence, to avoid
the need to discuss degenerate situations, we also assume
that n ≥ 2. For each i ∈ N and for all z ∈ IR define
pi(z) ≡ ai − biz and qi(z) ≡ ciz. Under a fixed inspec-
tion strategy x∗ ∈ X, the problem that the inspectee faces is
the ordinary linear knapsack problem with profit coefficients
pi(x

∗
i )’s, unit cost for each i ∈ N , and a total budget of a

single unit. Suppressing the dependence of the pi(x
∗
i )’s on

x∗, the inspectee’s problem is expressed by

max
∑
i∈N

piyi (11a)

s.t.
∑
i∈N

yi ≤ 1, (11b)

yi ≥ 0 for each i ∈ N . (11c)

Further, for a given violation strategy y∗ ∈ Y , qi(y
∗
i ) is

the expected profit (reduced cost) of the inspector per unit
invested in inspecting site i ∈ N . As ci > 0 and y∗

i ≥ 0,
qi(y

∗
i ) ≥ 0 for all y∗ ∈ Y . Suppressing the dependence of
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the qi(y
∗
i )’s on y∗, the problem that the inspector faces is then

given by

max
∑
i∈N

qixi (12a)

s.t.
∑
i∈N

xi ≤ B, (12b)

0 ≤ xi ≤ αi for each i ∈ N , (12c)

which is the well-known bounded knapsack problem (see
Ref. [10]).

In the following, we will refer interchangeably to optimal
solutions of (11) and (12) and best responses, respectively,
to x∗ and y∗.

Lemmas 1 and 2 record the solutions of (11) and (12),
respectively. As their proofs are standard, they are omitted.
Throughout, the empty sum is defined to be 0.

LEMMA 1 (Unbounded Knapsack): (11) has an optimal
solution. Further, letting M = arg maxj∈N pj , y∗ ∈ IRn is
optimal for (12) if and only if y∗ ≥ 0,

∑
i∈N\M y∗

i = 0, and
one of the following cases holds:

i. maxj∈N pj > 0 and
∑

i∈M y∗
i = 1. In this case, there

exists a w ∈ N such that pw = maxj∈N pj > 0 and
y∗

w > 0.
ii. maxj∈N pj = 0 and 0 ≤ ∑

i∈M y∗
i ≤ 1. In this case,

if y∗
w > 0 for some w ∈ N , then pw = maxj∈N pj =

0. Further, if pj = 0 for all j ∈ N then every y ∈ Y

is optimal for (11).
iii. maxj∈N pj < 0 and

∑
i∈M y∗

i = 0.

LEMMA 2 (Bounded Knapsack): (12) has an optimal solu-
tion. Assume that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0, let

∑k−1
j=1 αj <

B ≤ ∑k
j=1 αj for some k ∈ N , and E ≡ {i ∈ N : qi = qk}.

Then, x∗ ∈ IRn
⊕ is optimal for (12) if and only if:

• for i ∈ {1, . . . , k} \ E x∗
i = αi ,

• for i ∈ {k + 1, . . . , n} \ E x∗
i = 0,

and

∑
i∈E

x∗
i

{
= B − ∑

i∈{1,...,k}\E αi if qk > 0,

≤ B − ∑
i∈{1,...,k}\E αi if qk = 0.

The next corollary of Lemma 2 records simple necessary
conditions for optimality in (12).

COROLLARY 1: Suppose that x∗ is optimal for (12), and
for some u ∈ N : qu > 0 and x∗

u < αu. Then
∑

j∈N x∗
j = B,

and x∗
k = 0 for each k ∈ N with qk < qu.

A goal of the inspector is to reduce the coefficients pi(·)’s
to zero, which would induce the inspectee to fully comply.
But, the inspector is subject to two types of constraints. The
bound constraints (12c) restrict the amounts of resource that
can be allocated to each individual site, whereas the budget
constraint (12b) restricts the total amount of resource that
can be spent on all sites. When ai − biαi = pi(αi) ≤ 0
(that is, ai

bi
≤ αi) for each i ∈ N , the bound constraints

are redundant. The following two theorems establish neces-
sary and sufficient conditions for a Nash equilibrium, dis-
tinguishing between the case where this condition is satis-
fied strictly and the case where it is not. Specifically, let
ν− ≡ {i ∈ N : ai

bi
< αi}, ν0 ≡ {i ∈ N : ai

bi
= αi}, and

ν+ ≡ {i ∈ N : ai

bi
> αi}, then ν+ = ∅ implies that the bound

constraints are redundant.

THEOREM 1: Suppose ν+ = ∅ (αi ≥ ai

bi
for each i ∈ N ).

Necessary and sufficient conditions for (x∗, y∗) to be a Nash
equilibrium along with the resulting payoffs are listed below
for the four mutually exclusive collectively exhaustive cases

i. B >
∑

j∈N

aj

bj
and

(x∗
i , y∗

i ) =
⎧⎨⎩

(
ai

bi

, ρi

)
if i ∈ ν0,

(ξi , 0) if i ∈ ν−,
(13)

with ai

bi
≤ ξi ≤ αi for i ∈ ν−,

∑
i∈ν− ξi ≤ B −∑

i∈ν0

ai

bi
, ρi ≥ 0 for i ∈ ν0,

∑
i∈ν0

ρi ≤ 1. The
corresponding payoffs are:

Û I (x∗, y∗) =
∑
i∈ν0

ρici

ai

bi

(14)

UV (x∗, y∗) = 0.

ii. B = ∑
j∈N

aj

bj
, and for some ζ ≥ 0,

(x∗
i , y∗

i ) =

⎧⎪⎪⎨⎪⎪⎩
(

ai

bi

, ρi

)
if i ∈ ν0(

ai

bi

,
ζ

ci

)
if i ∈ ν−,

(15)

with ρi ≥ ζ

ci
for i ∈ ν0,

∑
i∈ν0

ρi + ∑
i∈ν−

ζ

ci
≤ 1.

The corresponding payoffs are:

Û I (x∗, y∗) =
∑
i∈ν0

ρici

ai

bi

+
∑
i∈ν−

ζ
ai

bi

(16)

UV (x∗, y∗) = 0.
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iii.
∑k−1

j=1
aj −ak

bj
< B <

∑k
j=1

aj −ak+1

bj
for some k ∈ N ,

and

(x∗
i , y∗

i ) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ai − δ

bi

,
1
ci∑k

j=1
1
cj

⎞⎠ if i = 1, . . . , k

(0, 0) if k < i ≤ n,
(17)

with δ ≡
∑k

j=1
aj

bj
−B∑k

j=1
1
bj

. The corresponding payoffs are:

Û I (x∗, y∗) = B∑k
j=1

1
cj

(18)

UV (x∗, y∗) = δ.

iv. B = ∑k
j=1

aj −ak+1

bj
for some k ∈ {1, . . . , n − 1}, and

(x∗
i , y∗

i )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ai − ak+1

bi

,
1−η

ci∑k
j=1

1
cj

⎞⎠ if i = 1, . . . , k

(0, η) if i = k + 1
(0, 0) if k + 1 < i ≤ n,

(19)

for some 0 ≤ η ≤ 1∑k+1
j=1

ck+1
cj

(< 1). The corresponding

payoffs are:

Û I (x∗, y∗) = (1 − η)B∑k
j=1

1
cj

(20)

UV (x∗, y∗) = ak+1.

The next result complements Theorem 1 by considering the
case where ν+ 	= ∅. In this case, let τ ≡ maxi∈N {pi(αi) =
ai − biαi} (note that ν+ 	= ∅ implies τ > 0), μ ≡ max {i ∈
N : ai ≥ τ }, N̂ ≡ {1, . . . , μ}, ν̂− ≡ {i ∈ N̂ : ai−τ

bi
< αi},

and ν̂0 ≡ {i ∈ N̂ : ai−τ

bi
= αi} (note that τ = ai − biαi for

some i ∈ N , that is, ν̂0 	= ∅). For i ∈ N , τ ≥ ai −biαi , that is,
αi ≥ ai−τ

bi
; hence, ν̂+ ≡ {i ∈ N̂ : ai−τ

bi
> αi} = ∅ and ν̂− and

ν̂0 partition N̂ . Further, for each i ∈ N \ N̂ , pi(xi) ≤ ai < τ .

THEOREM 2: Suppose ν+ 	= ∅. Necessary and sufficient
conditions for (x∗, y∗) to be a Nash equilibrium along with
the resulting payoffs are listed below for the three mutually
exclusive collectively exhaustive cases:

i. B >
∑

j∈N̂

aj −τ

bj
, and

(x∗
i , y∗

i ) =

⎧⎪⎪⎨⎪⎪⎩
(

ai − τ

bi

, ρi

)
if i ∈ ν̂0

(ξi , 0) if i ∈ ν̂−
(ξi , 0) if i ∈ N \ N̂ ,

(21)

with ai−τ

bi
≤ ξi ≤ αi for i ∈ ν̂−, 0 ≤ ξi ≤ αi for

i ∈ N \ N̂ ,
∑

i∈̂ν0

ai−τ

bi
+∑

i∈̂ν− ξi +∑
i∈N\N̂ ξi ≤ B,

ρi ≥ 0 for i ∈ ν̂0,
∑

i∈̂ν0
ρi = 1. The corresponding

payoffs are:

Û I (x∗, y∗) =
∑
i∈̂ν0

ρici

(
ai − τ

bi

)
(22)

UV (x∗, y∗) =
∑
i∈̂ν0

ρiτ .

ii. B = ∑
j∈N̂

aj −τ

bj
and for some ζ ≥ 0,

(x∗
i , y∗

i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ai − τ

bi

, ρi

)
if i ∈ ν̂0(

ai − τ

bi

,
ζ

ci

)
if i ∈ ν̂− \ {μ} or

i = μ and aμ > τ

(0, ρμ) if i = μ ∈ ν̂− and aμ = τ

(0, 0) if i ∈ N \ N̂ ,
(23)

with ρi ≥ ζ

ci
for i ∈ ν̂0, ρμ ≤ ζ

cμ
if μ ∈ ν̂− and

aμ = τ . The corresponding payoffs are:
If i = μ and aμ > τ :

Û I (x∗, y∗) =
∑
i∈̂ν0

ρici

(
ai − τ

bi

)

+
∑

i∈̂ν−\{μ}
ζ

(
ai − τ

bi

)
+ ζ

(
aμ − τ

bμ

)
(24)

UV (x∗, y∗) =
∑
i∈̂ν0

ρiτ +
∑

i∈̂ν−\{μ}

ζ

ci

ρ + ζ

cμ

τ .

If i = μ ∈ ν̂− and aμ = τ :

Û I (x∗, y∗) =
∑
i∈̂ν0

ρici

(
ai − τ

bi

)
+

∑
i∈̂ν−\{μ}

ζ

(
ai − τ

bi

)
(25)

UV (x∗, y∗) =
∑
i∈̂ν0

ρiτ +
∑

i∈̂ν−\{μ}

ζ

ci

τ + ρμτ .

iii. 0 < B <
∑

j∈N̂

aj −τ

bj
, and (x∗, y∗) is a Nash equi-

librium for the model where each αi is replaced by
ᾱi ≡ max{αi ,

ai

bi
}, to which Theorem 1 applies.
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4. SENSITIVITY OF NASH EQUILIBRIA TO
BUDGET CHANGES

The purpose of this section is to explore the effect of the
changes in the amount B that is available to the inspector on
the Nash equilibria. To do so, we consider “imperfect infor-
mation” variant of the game we solved. In the modified game,
each player knows its and the opponent’s possible actions and
payoff functions, but B is an exogenous parameter, which is
unknown to the players. We assume that the players have
some beliefs about B’s value, but are uncertain about it.

We will consider the case where ν+ = ∅. The values
B = ∑k

j=1
aj −ak+1

bj
, for k = 0, 1, . . . , n, will be referred

to as singular amounts of the inspector’s resource (k = n

corresponding to B = ∑
j∈N

aj

bj
). These singular amounts

are treated distinctly in Theorem 1. The set of nonsingu-
lar amounts is the union of disjoint open intervals Ik ≡
(
∑k−1

j=1
aj −ak

bj
,
∑k

j=1
aj −ak+1

bj
), k = 1, . . . , n; the closure of

each Ik will be denoted Īk .
The case where ν+ = ∅ is addressed in Theorem 1

which demonstrates: (i) for nonsingular amounts B <∑
j∈N

aj

bj
, Nash equilibrium allocations of the inspector and

the inspectee are unique, (ii) for singular amounts, Nash
equilibrium allocations of the inspector are unique whereas
the inspectee has multiple Nash equilibrium allocations, and
finally, (iii) for B >

∑
j∈N

aj

bj
, Nash equilibrium allocations

of both players are not unique. In either case, the Nash equi-
librium allocations of the players are in product form, that
is, their selection (by the inspector and by the inspectee) are
independent. Consequently, the notion equilibrium strategies
for the inspector and for the inspectee will be used. Fur-
ther, the sets of equilibrium strategies will be indexed by B,
using the notation x∗(B) and y∗(B), respectively. Formally,
x∗(·) and y∗(·) express point to set mappings, but we refer
to them as functions on subsets of their domain on which the
corresponding ranges consist of singletons. In addition, the
strategy sets will also be indexed by B, that is, X(B) and
Y (B). Properties of x∗(·) and y∗(·) are next recorded. The
symbol ± is used to indicate either + or −.

LEMMA 3: Assume that ν+ = ∅.

i. For B >
∑

j∈N

aj

bj
, y∗(B) = {y ∈ Y (B) : yi =

0 for each i ∈ ν− and yi ≥ 0 for each i ∈ ν0}, and
x∗(B) = {x ∈ X(B) : ai

bi
≤ xi ≤ αi for each i ∈

N},
ii. x∗(·) is a piecewise linear, continuous and weakly

increasing function on the interval (0,
∑

j∈N

aj

bj
]. Fur-

ther, for i ∈ N , x∗
i (·) is zero on (0,

∑i−1
j=1

aj −ai

bj
] and

for i ≤ k ≤ n, its slope on Ik is
1
bi∑k

j=1
1
bj

, which

decreases in i ≤ k ≤ n, so, x∗
i (·) is concave on

[∑i−1
j=1

aj −ai

bj
,
∑n

j=1
aj

bj
].

iii. For i ∈ N , y∗
i (·) is zero on (0,

∑i−1
j=1

aj −ai

bj
) and for

i ≤ k ≤ n, y∗
i (·) equals

1
ci∑k

j=1
1
cj

on Ik , a constant

which decreases in k.
iv. For i ∈ N and any singular amount B, let y∗

i (B ±
0) ≡ limε↓0 y∗

i (B ± ε). If B = ∑k
j=1

aj −ak+1

bj
for

k ∈ N \ {n}, then

y∗
i (B) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣y∗
i (B − 0) =

1
ci∑k

j=1
1
cj

, y∗
i (B + 0) =

1
ci∑k+1

j=1
1
cj

⎤⎦
for i = 1, . . . , k⎡⎣y∗

i (B − 0) = 0, y∗
i (B + 0) =

1
ci∑k+1

j=1
1
cj

⎤⎦
for i = k + 1

{0} if i = k + 2, . . . , n
(26)

The results of Lemma 3 are next used to determine
the equilibrium utility functions of the inspector and
of the inspectee. The notation (Û I )∗(B) and (UV )∗(B)

will be used for the set of equilibrium utility pay-
offs of the corresponding player under B, for example,
(Û I )∗(B) = {Û I (x∗, y∗) : (x∗, y∗) is a Nash equilibrium
when B is the amount of available resource}. As is done for
the equilibrium strategies, we refer to (Û I )∗(·) and (UV )∗(·)
as functions on subsets of their domain on which the
corresponding ranges consist of singletons.

THEOREM 3: Assume that ν+ = ∅.

i. For B >
∑

j∈N

aj

bj
, (UV )∗(B) = 0 and (Û I )∗(B) ≥

0.
ii. (UV )∗(·) is piecewise linear, continuous, decreasing

and convex in B on the interval (0,
∑

j∈N

aj

bj
], further,

its slope on Ik is −1∑k
j=1

1
bj

; these negative constants

increase in k.
iii. For k ∈ N , (Û I )∗(·) is linearly increasing in B on Ik

with slope 1∑k
j=1

1
cj

; these positive constants decrease

in k.
iv. For singular amount B = ∑k

j=1
aj −ak+1

bj
, let

(Û I )∗(B ± 0) ≡ limε↓0(Û
I )∗(B ± ε). If B =∑k

j=1
aj −ak+1

bj
for k ∈ N , then
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(Û I )∗(B) =
⎡⎣(Û I )∗(B − 0) =

∑k
j=1(

aj −ak+1

bj
)∑k

j=1
1
cj

,

(Û I )∗(B + 0) =
∑k

j=1(
aj −ak+1

bj
)∑k+1

j=1
1
cj

⎤⎦
(27)

Lemma 3, part (ii) and Theorem 3, parts (iii) and (iv),
demonstrate a counterintuitive phenomenon: while the x∗

i ’s
are monotonically increasing and continuous in B, (Û I )∗(·)
is not. In particular, (Û I )∗(·) increases on each (open) interval
Ik of nonsingular amounts, and then it “drops” at the singu-
lar amounts, that is, (Û I )∗(·) is not monotonically increasing
in B. At the following interval Ik+1, the slope of (Û I )∗(·) is
still positive, but lower. This nonmonotonicity effect might be
considered as a variant of the Braess paradox Ref. [4]: adding
more resources to a network where the agents are strategic
and rational does not necessarily increase their payoffs. Here,
the resources are added to the inspector and affect negatively
only its payoff. This variant of the Braess paradox occurs
from a similar reason as the original one: noncooperative
Nash equilibria are not necessarily Pareto efficient Ref. [6]. In
these singular amounts, the inspectee is indifferent between
violating in sites 1, . . . , k (1 ≤ k < n) and violating in sites
1, . . . , k+1, while the inspector is determined to inspect only
in sites 1, . . . , k. Hence, when the inspectee decides to violate
in the larger set of sites (1, . . . , k + 1), the inspector’s payoff
decreases. This observation means that for every selection
of parameters for this game, there is a set of budget-values
beyond which there are intervals of discontinuity in the bud-
gets allocated to the inspector. In other words, the inspector’s
true payoff function can be depicted as a step function, for
example, there is an interval of discontinuity in budgets allo-
cated for the inspector at [5, 7.5] in the (following) Figure 3.
That is, if the inspector is offered a budget within this interval,
than it would prefer to stay with a budget of 5. This phenom-
enon is further demonstrated in the forthcoming numerical
examples.

5. NUMERICAL EXAMPLES

EXAMPLE 1: Consider an example with the data given in
Table 1 (as B is an exogenous parameter, it is not given as
part of the game’s data):

In this example, there are seven sites. Also, αi ≥ ai

bi
for

each i ∈ N , so ν+ = ∅. This case is addressed in Theorem
1. In particular, the inspector has no local limitations [see
(12c)], and it can inspect the sites such that their pi(xi)’s will
have a value of 0. Nash equilibria solutions of this problem
are depicted in Figures 1–4, parameterically in B. We next
offer some interpretations for these figures.

Figures 1 and 2 represent equilibrium values of xi’s and
yi’s as a function of B, respectively. The inspector starts

Table 1. Data for example 1.

i ai bi ci αi

1 30 1 10 50
2 25 1 20 30
3 20 1 15 40
4 18 1 5 18
5 12 1 17 17
6 10 1 12 36
7 7 1 11 75

inspecting site 1, and continues to increase its allocation until
p1(x

∗
1 ) satisfies: p1(x

∗
1 ) ≡ a1 − b1x

∗
1 = a2. Under this allo-

cation, the inspectee violates with certainty in site 1, that is,
it invests y∗

1 = 1 (as this site is the most beneficial to it),
and complies with certainty in sites 2-7, that is, it invests 0
in them. At B = 5, sites 1 and 2 are equally beneficial for
the inspectee, and it switches to a mode of partial violation
at them, with 0.66 ≤ y∗

1 ≤ 1, 0 ≤ y∗
2 ≤ 0.33, and y∗

i = 0
for i = 3, . . . , 7. When 5 < B < 15, the extra resource
B − 5 of the inspector is allocated to sites 1 and 2, such that
p1(x

∗
1 ) = p2(x

∗
2 ) ≥ a3. The inspectee partially violates in

sites 1 and 2 with y∗
1 = 0.66, y∗

2 = 0.33, and complies with
certainty at the other sites with y∗

i = 0 for i = 3, . . . , 7.
When B = 15, sites 1,2 and 3 are equally beneficial for the
inspectee, and hence it partially violates at these sites, with
0.46 ≤ y∗

1 ≤ 0.66, 0.23 ≤ y∗
2 ≤ 0.33, 0 ≤ y∗

3 ≤ 0.3,
and y∗

i = 0 for i = 4, . . . , 7. When 15 < B < 21, the extra
resource B −15 of the inspector is allocated to sites 1,2 and 3
in the same way, and so on until the point where B = 122. At
this point, all sites are inspected such that their pi(x

∗
i )’s have

a value of 0, and so the inspectee complies with certainty.
Figure 3 plots Û I (x∗, y∗) as a function of B. The equi-

librium utility of the inspector is expressed as a point-to-set
function of the amount of resource B which exhibits “drops,”
at the points where the pi(x

∗
i )’s of the inspected sites have

the same value as that of the next uninspected site, that is,
at singular amounts of resource. This point to set map is lin-
ear and increasing between jumps, with decreasing slopes in
progressing intervals.

Figure 4 expresses UV (x∗, y∗) as a function of B. The
equilibrium utility of the inspectee is piecewise linear and
decreasing.

EXAMPLE 2: Consider an example with the same data
as in Table 1, except for α4 and α5, which now are changed
into 8 and 7, respectively. Hence, α4 < a4

b4
and α5 < a5

b5
, so

ν+ 	= ∅.
The case where ν+ 	= ∅ is addressed in Theorem 2.

In this example, τ ≡ maxi∈N pi(αi) = 10, and μ =
{maxi∈Nai ≥ τ } = 5, implying that N̂ = {1, . . . , 5}. Hence,
the maximum amount of resource the inspector may use is:∑

i∈N̂
ai−τ

bi
= 55. The inspector and the inspectee act in a

similar way to that explained in Example 1. However, the
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Figure 1. I ’s equilibrium strategies as a function of B when ν+ = ∅. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

inspector cannot inspect beyond the point where the pi(x
∗
i )’s

of sites 1–5 have the same positive value of 10, and so the
inspectee is not deterred from violation.

The inspector’s equilibrium values and the inspectee’s
equilibrium values are not plotted here, because they are
almost identical to the relevant figures in Example 1, with

Figure 2. V ’s equilibrium strategies as a function of B when ν+ = ∅. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 3. I ’s equilibrium payoffs as a function of B when ν+ = ∅.

the difference that the graphs are cut in the budget value
of 55.

The inspector’s payoff function and the inspectee’s pay-
off function are depicted in Figures 5 and 6, parameterically
in B.

6. CONCLUDING REMARKS

This article considers a (one stage) noncooperative
nonzero-sum inspection game between an inspector and an
inspectee who exhibit conflicting interests. Both players have

Figure 4. V ’s equilibrium payoffs as a function of B when ν+ = ∅.
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Figure 5. I ’s equilibrium payoffs as a function of B when ν+ 	= ∅.

limited resources available for their actions, and there are
multiple sites where they can act. The inspectee has to choose
a vector of violation probabilities over the sites (whose sum
do not exceed one), and the inspector has to determine the
allocation of its inspection resources over the sites to detect
the violations. In addition to its global resource limitation, the

inspector has local restrictions on the amounts of resource it
can allocate to the sites. All Nash equilibria solutions are
derived for this game.

In some cases, the structure of our game yields an interest-
ing phenomenon where the inspector’s utility decreases when
the amount of resource available to it increases. Such cases

Figure 6. V ’s equilibrium payoffs as a function of B when ν+ 	= ∅.
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were demonstrated in Sections 4 and 5, which also provide
explanation as to what cause them.

In a follow-up work, which we have already begun, the
game modeled here will be further extended to situations in
which the inspectee can violate with certainty in more than
one site. Further, investigating whether the counterintuitive
phenomenon we observed here is still present in a repeated
game of this model can also be of interest as future work.

APPENDIX A: PROOF OF PROPOSITION 1

As Û I (x, y) and UV (x, y) are bilinear in (x, y), and X and Y are non-
empty, convex and compact, the existence of Nash equilibria for the game
follows from a classic result of Rosen Ref. [1]. ||

APPENDIX B: PROOF OF THEOREM 1

Sufficiency

i. B >
∑

j∈N

aj

bj
:

Assume that (x∗, y∗) satisfies (13) with corresponding ξi ’s and
ρi ’s. Then, clearly, x∗ ∈ X and y∗ ∈ Y . Also, pi(x

∗
i ) =

ai − bix
∗
i ≤ 0 for each i ∈ N , implying that a best response of the

inspectee to x∗ is any vector y ∈ Y satisfying yi = 0 for i ∈ N with
pi(x

∗
i ) < 0 (Lemma 1(ii)). As {i ∈ N : pi(x

∗
i ) < 0} = {i ∈ N :

x∗
i >

ai
bi

} = {i ∈ N : ai
bi

< x∗
i ≤ αi} ⊆ ν− ⊆ {i ∈ N : y∗

i = 0},
y∗ is such a (best) response. On the other hand, if y∗

i > 0, then
(by the definition of ν0) i ∈ ν0 and x∗

i = ai
bi

= αi . So, x∗
i = αi

whenever qi(y
∗
i ) = ciy

∗
i > 0. By Lemma 2, x∗ is a best response

of the inspector to y∗.
ii. B = ∑

j∈N

aj

bj
:

Assume that ζ ≥ 0 and (x∗, y∗) satisfies (15) with correspond-
ing ρi ’s. Then, clearly, x∗ ∈ X (x∗

i = ai
bi

≤ αi for each i ∈ N

and
∑

j∈N x∗
j = ∑

j∈N

aj

bj
= B) and y∗ ∈ Y . Next, observe that

pi(x
∗
i ) = ai − bix

∗
i = 0 for each i ∈ N , implying (by Lemma

1(ii) that any vector y ∈ Y is a best response of the inspectee
to x∗. In particular, y∗ is such a response. On the other hand,
qi(y

∗
i ) = ciy

∗
i = ζ ≥ 0 for i ∈ ν−, and qi(y

∗
i ) = ciy

∗
i = ciρi ≥ ζ

for i ∈ ν0. By Lemma 2, any x ∈ X with
∑

i∈N xi = B and xi = αi

for each i with qi(y
∗
i ) > ζ is a best response of the inspector to

y∗. As ciy
∗
i = qi(y

∗
i ) > ζ implies that i ∈ ν0 and x∗

i = ai
bi

= αi ,
x∗ is such a response.

iii.
∑k−1

j=1
aj −ak

bj
< B <

∑k
j=1

aj −ak+1
bj

for some k ∈ N :

Assume that (x∗, y∗) satisfies (17) with δ ≡
∑k

j=1
aj
bj

−B∑k
j=1

1
bj

. Then,

clearly, y∗ ∈ Y . Also, as
∑k−1

j=1
aj −ak

bj
< B <

∑k
j=1

aj −ak+1
bj

,

δ ≡
∑k

j=1
aj

bj
− B∑k

j=1
1
bj

>

∑k
j=1

aj

bj
− ∑k

j=1
aj −ak+1

bj∑k
j=1

1
bj

= ak+1 ≥ 0,

and

δ ≡
∑k

j=1
aj

bj
− B∑k

j=1
1
bj

<

∑k
j=1

aj

bj
− ∑k−1

j=1
aj −ak

bj∑k
j=1

1
bj

=
∑k

j=1
aj

bj
− ∑k

j=1
aj −ak

bj∑k
j=1

1
bj

= ak .

For i = 1, . . . , k, it then follows that αi ≥ ai
bi

>
ai−δ
bi

= x∗
i and

x∗
i = ai−δ

bi
>

ai−ak
bi

≥ 0 (the last inequality by (10)). The def-

inition of δ also assures that
∑

j∈N x∗
j = ∑k

j=1
aj −δ

bj
= B. So,

x∗ ∈ X. Next, observe that

pi(x
∗
i ) = ai − bix

∗
i

=
{
δ for i = 1, . . . , k
ai ≤ ak+1 < δ for i = k + 1, . . . , n,

implying (by Lemma 1(i)) that a best response of the inspectee to
x∗ is any vector y ∈ Y satisfying yi = 0 for i = k + 1, . . . , n and∑k

j=1 yj = 1. In particular, y∗ is such a response. On the other
hand,

qi(y
∗
i ) = ciy

∗
i =

{ 1∑k
i=1

1
ci

for i = 1, . . . , k

0 for i = k + 1, . . . , n,

implying (by Lemma 2) that a best response of the inspector to y∗
is any vector x ∈ X satisfying xi = 0 for i = k + 1, . . . , n and∑k

j=1 xj = B. In particular, x∗ is such a response.

iv. B = ∑k
j=1

aj −ak+1
bj

for some k ∈ {1, . . . , n − 1}:
Assume that (x∗, y∗) satisfies (19) with 0 ≤ η ≤ 1∑k+1

j=1
ck+1
cj

.

As k < n (that is, ck+1 is defined), clearly, 1∑k+1
j=1

ck+1
cj

< 1.

For each i = 1, . . . , k, x∗
i = ai−ak+1

bi
> 0 (by (10)), and αi ≥

ai
bi

>
ai−ak+1

bi
= x∗

i . Also,
∑

j∈N x∗
j = ∑k

j=1
aj −ak+1

bj
= B. So,

x∗ ∈ X. Next, as 0 ≤ η ≤ 1∑k+1
j=1

ck+1
cj

< 1, it follows that y∗
i ≥ 0

for each i ∈ N . Further,
∑

u∈N y∗
u = η + ∑k

u=1
1−η

cu
∑k

j=1
1
cj

= 1.

So y∗ ∈ Y . Next, observe that

pi(x
∗
i ) = ai − bix

∗
i =

{
ak+1 for i = 1, . . . , k + 1
ai < ak+1 for i = k + 2, . . . , n,

implying (by Lemma 1(i)) that a best response of the inspectee to
x∗ is any vector y ∈ Y satisfying yi = 0 for i = k + 2, . . . , n and∑k+1

j=1 yj = 1. In particular, y∗ is such a response. On the other
hand,

qi(y
∗
i ) = ciy

∗
i =

⎧⎪⎨⎪⎩
1−η∑k
i=1

1
ci

for i = 1, . . . , k

ck+1η for i = k + 1
0 for i = k + 2, . . . , n.

As 0 ≤ η ≤ 1∑k+1
j=1

ck+1
cj

= 1
1+ck+1

∑k
j=1

1
cj

, it follows that

0 ≤ η + ck+1η
∑k

j=1
1
cj

≤ 1; so, 0 ≤ qk+1(y
∗
k+1) = ck+1η ≤

1−η∑k
j=1

1
cj

= ciy
∗
i = qi(y

∗
i ) and qi(y

∗
i ) = 1−η∑k

j=1
1
cj

> 0 for

i = 1, . . . , k. Thus (by Lemma 2), any vector x ∈ X with xi = 0
for i = k + 1, . . . , n and

∑k
i=1 xi = B is a best response of the

inspector to y∗. In particular, x∗ is such a response.

Necessity

Suppose that (x∗, y∗) is a Nash equilibrium. The following five observa-
tions will be used to prove the necessity of cases (i)—(iv):
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A. If y∗ = 0, then (by Lemma 1(ii) and Lemma 1(iii)) for all i ∈ N ,
pi(x

∗
i ) ≤ 0, that is, x∗

i ≥ ai
bi

.
B. If y∗

u > 0 for u ∈ N , then (by Lemma 1(i) and Lemma 1(ii))
pu(x

∗
u) ≥ 0, that is, x∗

u ≤ au
bu

.

C. If x∗
i <

ai
bi

for some i ∈ N , then pi(x
∗
i ) > 0 and (by Lemma 1(i))

{j ∈ N : y∗
j > 0} ⊆ arg max

j∈N
pj (x

∗
j )

⊆ {j ∈ N : pj (x
∗
j ) > 0} =

{
j ∈ N : 0 ≤ x∗

j <
aj

bj

}
,

and ∑
j∈N

y∗
j = 1.

In particular, for some w ∈ N , y∗
w > 0 and x∗

w < aw
bw

.

D. If B <
∑

j∈N

aj

bj
, then

{i ∈ N : x∗
i > 0} ⊆ {i ∈ N : y∗

i > 0}, (28)

and ∑
i∈N

x∗
i = B. (29)

Indeed, as
∑

j∈N x∗
j ≤ B <

∑
j∈N

aj

bj
, x∗

k <
ak
bk

for some k ∈ N .

It next follows from (C) that for some w ∈ N , x∗
w < aw

bw
≤ αw and

y∗
w > 0, the latter implying that qw(y∗

w) = cwy∗
w > 0. As x∗

w < αw

and qw(y∗
w) > 0, (29) follows from Corollary 1. Further, if y∗

u = 0,
then qu(y

∗
u) = cuy

∗
u = 0 < qw(y∗

w) and Corollary 1 implies that
x∗

u = 0. So, x∗
u > 0 implies y∗

u > 0, verifying (28).
E. If B <

∑
j∈N

aj

bj
, 1 ≤ u < i and y∗

i > 0, then y∗
u > 0. Indeed,

assume that y∗
u = 0. Then qi(y

∗
i ) = ciy

∗
i > 0 = cuy

∗
u = qu(y

∗
u)

and (by Lemma 1(i) and Lemma 1(ii)) pu(x
∗
u) ≤ pi(x

∗
i ); in par-

ticular, au − bux
∗
u = pu(x

∗
u) ≤ pi(x

∗
i ) ≤ ai < au (the last

inequality by (10)), implying that x∗
u > 0. As qi(y

∗
i ) > qu(y

∗
u)

and x∗
u > 0, Lemma 2 implies that x∗

i = αi ≥ ai
bi

and therefore
pi(x

∗
i ) = ai − bix

∗
i ≤ 0. As y∗

i > 0, Lemma 1(ii) implies that
for each j ∈ N , aj − bj x

∗
j = pj (x

∗
j ) ≤ pi(x

∗
i ) ≤ 0, that is,

x∗
j ≥ aj

bj
and therefore

∑
j∈N

aj

bj
≤ ∑

j∈N x∗
j ≤ B <

∑
j∈N

aj

bj
, a

contradiction.

i. B >
∑

j∈N

aj

bj
:

It will be shown that (13) is satisfied with corresponding ξi ’s
and ρi ’s. As (x∗, y∗) ∈ X × Y , it suffices to show that y∗

i = 0 for
i ∈ ν− and x∗

i ≥ ai
bi

for i ∈ N (the latter would imply that for

i ∈ ν0, ai
bi

≤ x∗
i ≤ αi = ai

bi
, assuring that x∗

i = ai
bi

). Assume first
that y∗

u > 0 for some u ∈ ν− and we will establish a contradic-
tion. The assumption y∗

u > 0 implies that qu(y
∗
u) = cuy

∗
u > 0

and, by (B), x∗
u ≤ au

bu
< αu. Using Corollary 1, it then fol-

lows that
∑

j∈N x∗
j = B >

∑
j∈N

aj

bj
. Consequently, for some

v ∈ N \ {u}, x∗
v > av

bv
, implying that pv(x

∗
v ) = av − bvx

∗
v < 0

and (by Lemma 1(i)) y∗
v = 0. But, qu(y

∗
u) > 0 = cvy

∗
v = qv(y

∗
v ),

x∗
v > av

bv
> 0, and x∗

u < αu contradict Corollary 1. Next, assume
that x∗

u < au
bu

≤ αu for some u ∈ N and we will establish another
contradiction. As x∗

u < au
bu

, (C) implies that for some w ∈ N ,
y∗

w > 0 and x∗
w < aw

bw
≤ αw . Replacing u by w in the above argu-

ments leading to a contradiction under the assumption that y∗
u > 0

and x∗
u ≤ au

bu
< αu apply. So, (x∗, y∗) satisfies (13).

ii. B = ∑
j∈N

aj

bj
:

It will be shown that (15) is satisfied for some ζ ≥ 0. If
y∗ = 0, then (A) implies that x∗

i ≥ ai
bi

for each i ∈ N . As

B ≥ ∑
j∈N x∗

j ≥ ∑
j∈N

aj

bj
= B, it follows that x∗

i = ai
bi

for

each i ∈ N . So, (15) holds with ζ = 0. Next, assume that y∗ 	= 0.
We claim that x∗

i ≥ ai
bi

for each i ∈ N . Indeed, if x∗
i <

ai
bi

for
some i ∈ N , then (C) implies that for some w ∈ N , y∗

w > 0 and
x∗

w < aw
bw

≤ αw , in particular, qw(y∗
w) = cwy∗

w > 0. It now follows

from Corollary 1 that
∑

j∈N x∗
j = B = ∑

j∈N

aj

bj
; as x∗

w < aw
bw

,

it further follows that x∗
v > av

bv
for some v ∈ N \ {w}, implying

that pv(x
∗
v ) = av − bvx

∗
v < 0 and [by Lemma 1(i)] y∗

v = 0. But,
qw(y∗

w) > 0 = cvy
∗
v = qv(y

∗
v ), x∗

v > av
bv

> 0 and x∗
w < αw

contradict Corollary 1. The contradiction proves that x∗
i ≥ ai

bi
for

each i ∈ N . As B ≥ ∑
j∈N x∗

j ≥ ∑
j∈N

aj

bj
= B, it follows that

x∗
i = ai

bi
for each i ∈ N , that is, x∗ satisfies (15). In particular,

x∗
i = ai

bi
= αi for each i ∈ ν0 and x∗

i = ai
bi

< αi for each i ∈ ν−.
By Lemma 2, qi(y

∗
i ) = ciy

∗
i is a nonnegative constant for i ∈ ν−,

say it equals ζ , and qi(y
∗
i ) = ciy

∗
i ≥ ζ for i ∈ ν0, so, y∗ satisfies

(15).
iii.

∑k−1
j=1

aj −ak

bj
< B <

∑k
j=1

aj −ak+1
bj

for some k ∈ N :

It will be shown that (17) is satisfied with δ ≡
∑k

j=1
aj
bj

−B∑k
j=1

1
bj

.

Evidently,
∑

j∈N

aj

bj
≥ ∑k

j=1
aj −ak+1

bj
> B. Hence, (D) and (E)

apply, assuring that (28) and (29) hold and for some α ∈ N

{1, . . . , α} = {j ∈ N : y∗
j > 0} ⊆ arg max

j∈N
pj (x

∗
j ), (30)

[the inclusion following from Lemma 1(i) or Lemma 1(ii) and
y∗ 	= 0 following from (28)-(29)].

We will prove that α = k. Let δ ≡ maxj∈N pj (x
∗
j ). By

(30), (28), and (29), for i ≤ α and u > α, y∗
i > 0 = y∗

u ,
ai − bix

∗
i = pi(x

∗
i ) = δ ≥ pα+1(x

∗
α+1) = aα+1, x∗

u = 0, and∑α
j=1 x∗

j = ∑
j∈N x∗

j = B. Thus, ai−δ
bi

= x∗
i ≤ ai−aα+1

bi
for

each i ≤ α, and therefore
∑α

j=1
aj −aα+1

bj
≥ ∑α

j=1 x∗
j = B >∑k−1

j=1
aj −ak

bj
. As

∑k−1
j=1

aj −ak

bj
is strictly increasing in k ≤ n− 1, it

follows that α > k −1, that is, α ≥ k. To establish a contradiction,
assume that α ≥ k + 1. Then for i = 1, . . . , k, δ = ai − bix

∗
i =

pi(x
∗
i ) = pk+1(x

∗
k+1) = ak+1 − bk+1x

∗
k+1 ≤ ak+1, implying that

x∗
i ≥ ai−ak+1

bi
; so,

∑k
j=1

aj −ak+1
bj

≤ ∑k
j=1 x∗

j ≤ ∑α
j=1 x∗

j = B <∑k
j=1

aj −ak+1
bj

, a contradiction.

As α = k, we have that x∗
i = ai−δ

bi
for i ≤ k and

x∗
u = y∗

u = 0 for u > k; so, x∗ satisfies (17). Further,∑k
j=1

aj −δ

bj
= ∑k

j=1 x∗
j = ∑

j∈N x∗
j = B, implying that δ =∑k

j=1
aj
bj

−B∑k
j=1

1
bj

>

∑k
j=1

aj
bj

−∑k
j=1

aj −ak+1
bj∑k

j=1
1
bj

= ak+1 > 0. Also, for

i = 1, . . . , k − 1, ai − bix
∗
i = δ = pk(x

∗
k ) ≤ ak , implying

that x∗
i = ai−δ

bi
≥ ai−ak

bi
> 0 [the last inequality follows from

(10)]. Hence,
∑k−1

j=1
aj −ak

bj
< B = ∑

j∈N x∗
j = x∗

k + ∑k−1
j=1

aj −δ

bj
,

assuring that δ < ak and x∗
k > 0. It follows that 0 < x∗

i = ai−δ
bi

<
ai
bi

≤ αi for i ≤ k and x∗
u = 0 for u > k. So, Lemma 2 implies

that for i ≤ k ciy
∗
i = qi(y

∗
i ) = η ≡ maxj∈N qj (y

∗
j ), assuring

that y∗
i = η

ci
. Further, as x∗

1 = a1−δ
b1

<
a1
b1

≤ α1, (C) implies that

1 = ∑
j∈N y∗

j = ∑k
j=1

η
cj

; hence, η = 1∑k
j=1

1
cj

, completing the

proof that y∗ satisfies (17).
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iv. B = ∑k
j=1

aj −ak+1
bj

for some k ∈ {1, . . . , n − 1}:
It will be shown that (19) is satisfied. Evidently, B =∑k
j=1

aj −ak+1
bj

<
∑

j∈N

aj

bj
and B = ∑k

j=1
aj −ak+1

bj
>∑k

j=1
aj −ak

bj
= ∑k−1

j=1
aj −ak

bj
. As B <

∑
j∈N

aj

bj
, the arguments

of case (iii) imply that for some α ∈ N , (28)–(30) hold.
Again, let δ ≡ maxj∈N pj (x

∗
j ). Arguments used to prove part

(ii), imply that 0 ≤ x∗
i = ai−δ

bi
for i ≤ α, x∗

u = 0 for u > α and
α ≥ k. As

k∑
j=1

aj − δ

bj

≤
α∑

j=1

aj − δ

bj

=
α∑

j=1

x∗
j = B =

k∑
j=1

aj − ak+1

bj

,

it follows that ak+1 ≤ δ. Thus, for j ≥ k + 2, pj (x
∗
j ) ≤ aj <

ak+1 ≤ δ and therefore, by (30) and (28), x∗
j = y∗

j = 0, in particu-
lar, α ≤ k+1. So, α ∈ {k, k+1}. As aj −ak+1 = 0 for j = k+1, it

follows that
∑α

j=1
aj −δ

bj
= B = ∑k

j=1
aj −ak+1

bj
= ∑α

j=1
aj −ak+1

bj
.

Thus, δ = ak+1 > 0, x∗
i = ai−δ

bi
= ai−ak+1

bi
> 0 for i ≤ k

and x∗
k+1 = B − ∑k

j=1 x∗
j = B − ∑k

j=1
aj −ak+1

bj
= 0. So, we

established that x∗ satisfies (19).
For i ≤ k, 0 < x∗

i = ai−ak+1
bi

<
ai
bi

≤ αi and for u > k + 1,
u > α which implies y∗

u = 0 and [by (28)] x∗
u = 0. Further,

x∗
k+1 = 0. With θ ≡ maxj∈N {qj (y

∗
j ) = cj y

∗
j }, it now follows

from Lemma 2 that

ciy
∗
i = qi(y

∗
i ) = θ ≥ qk+1(y

∗
k+1) = ck+1y

∗
k+1 for i ≤ k.

As x∗
1 = a1−ak+1

b1
<

a1
b1

, it follows that p1(x
∗
1 ) = a1 − b1x

∗
1 > 0

and therefore, by Lemma 1(i), 1 = ∑
j∈N y∗

j = ∑k+1
j=1 y∗

j . Con-

sequently, η ≡ y∗
k+1 = 1 − ∑k

j=1 y∗
j = 1 − ∑k

j=1
θ
cj

, implying

that θ = 1−η∑k
j=1

1
cj

and for i ≤ k, y∗
i = θ

ci
=

1−η
ci∑k

j=1
1
cj

. Finally,

η = y∗
k+1 ≥ 0 is trite and

⎡⎣η = y∗
k+1 ≤ θ

ck+1
=

1−η
ck+1∑k
j=1

1
cj

⎤⎦
⇒

⎡⎣η

⎛⎝ck+1 + 1∑k
j=1

1
cj

⎞⎠ ≤ 1∑k
j=1

1
cj

⎤⎦
⇒

⎡⎣η

⎛⎝ k∑
j=1

ck+1

cj

+ 1

⎞⎠ ≤ 1

Hence, y∗ satisfies (19) with 0 ≤ η ≤ 1∑k+1
j=1

ck+1
cj

. ||

APPENDIX C: PROOF OF THEOREM 2

Sufficiency

i. B >
∑

j∈N̂

aj −τ

bj
:

Assume that (x∗, y∗) satisfies (21) with corresponding ξi ’s and
ρi ’s. Then, clearly, x∗ ∈ X and y∗ ∈ Y . Also,

pi(x
∗
i ) =

⎧⎨⎩
τ if i ∈ ν̂0

ai − biξi ≤ τ if i ∈ ν̂−
ai − biξi ≤ ai < τ if i ∈ N \ N̂ ,

implying that maxj∈N pj (x
∗
j ) = τ > 0. A best response of the

inspectee to x∗ is then any vector y ∈ Y satisfying y ≥ 0,∑
j∈N yi = 1, and yi > 0 only if pi(x

∗
i ) = τ , that is, x∗

i = ai−τ
bi

[Lemma 1(i)]; in particular, y∗ is such a response. On the other
hand, if y∗

i > 0, then i ∈ ν̂0, implying that x∗
i = ai−τ

bi
= αi . So,

x∗
i = αi whenever qi(y

∗
i ) = ciy

∗
i > 0. By Lemma 2, x∗ is a best

response of the inspector to y∗.
ii. B = ∑

j∈N̂

aj −τ

bj
:

Assume that ζ ≥ 0 and (x∗, y∗) satisfies (23) with correspond-
ing ρi ’s . Then, clearly, x∗ ∈ X and y∗ ∈ Y . Next, observe that
pi(x

∗
i ) = ai −bix

∗
i = τ > 0 for each i ∈ N̂ , and pi(x

∗
i ) = ai < τ

for each i ∈ N \ N̂ , implying [by Lemma 1(i)] that a best response
of the inspectee to x∗ is any vector y ∈ Y satisfying yi ≥ 0 for
i ∈ N̂ , yi = 0 for i ∈ N \ N̂ , and

∑
j∈N yj = 1. In particular, y∗

is such a response. On the other hand,
∑

j∈N y∗
j = 1 assures that

maxj∈N {qj (y
∗
j ) = cj y

∗
j } > 0 and

qi(y
∗
i ) = ciy

∗
i

=

⎧⎪⎪⎨⎪⎪⎩
ciρi ≥ ζ if i ∈ ν̂0

ζ if i ∈ ν̂− \ {μ} or i = μ and aμ > τ

cμρμ ≤ ζ if i = μ ∈ ν̂− and aμ = τ

0 if i ∈ N \ N̂ .

By Lemma 2, any vector x ∈ X with
∑

i∈N xi = B, xi = αi for
each i with qi(y

∗
i ) > ζ , 0 ≤ xi ≤ αi for each i with qi(y

∗
i ) = ζ ,

and xi = 0 for each i with qi(y
∗
i ) < ζ is a best response of the

inspector to y∗. For the first of two cases assume that aμ > τ . In
this case, qi(y

∗
i ) > ζ implies i ∈ ν̂0 for which x∗

i = ai−τ
bi

= αi ,

and qi(y
∗
i ) < ζ implies i ∈ N \ N̂ for which x∗

i = 0; consequently
x∗ is a best response of the inspector to y∗. Alternatively, assume
that aμ = τ (which implies pμ(αμ) < τ , that is, μ ∈ ν−). In
this case, qi(y

∗
i ) > ζ implies i ∈ ν̂0 for which x∗

i = ai−τ
bi

= αi ,

further, qi(y
∗
i ) < ζ implies i ∈ N \ N̂ or i = μ and in either case

x∗
i = 0. So, again, x∗ is a best response of the inspector to y∗.

iii. 0 < B <
∑

j∈N̂

aj −τ

bj
:

Consider the model where each αi is replaced by ᾱi ≡
max{αi ,

ai
bi

} ≥ αi while all other data elements remain unchanged.
The model with the modified data will be referred to as the “bar”
model (to be distinguished from the original model that we dis-
cuss). The strategy set of the inspector in the “bar” model is
X̄ ≡ {x ∈ IRn : 0 ≤ xi ≤ ᾱi for i ∈ N and

∑
j∈N xj ≤ B} ⊇ X.

Also, for each i ∈ N , pi(ᾱi ) = ai − bi ᾱi ≤ 0, implying that
{i ∈ N : ai

bi
> ᾱi} = ∅ and consequently Theorem 1 applies to the

“bar” model.
Assume that (x∗, y∗) is a Nash equilibrium of the “bar” model.

As 0 < B <
∑

j∈N̂

aj −τ

bj
<

∑
j∈N

aj

bj
, Theorem 1 implies that

(x∗, y∗) satisfies either of the conditions given in (iii) or (iv) of
that theorem, with a corresponding k (and these conditions do not
depend on the ᾱi ’s). As X̄ ⊇ X, to show that (x∗, y∗) is a Nash
equilibrium it suffices to show that x∗ ∈ X.

Assume first that (x∗, y∗) satisfies condition (iii) of Theorem 1

with k ∈ N , that is, (x∗, y∗) satisfies (17) with δ ≡
∑k

j=1
aj
bj

−B∑k
j=1

1
bj

.

To prove that x∗ ∈ X it suffices to show that ai−δ
bi

≤ αi for

i = 1, . . . , k. The definition of δ assures that B = ∑k
j=1

aj −δ

bj
and
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the sufficiency proof of Theorem 1 assures that ak+1 < δ < ak .
So,

k−1∑
j=1

aj − ak

bj

=
k∑

j=1

aj − ak

bj

<

k∑
j=1

aj − δ

bj

= B <

μ∑
j=1

aj − τ

bj

<

μ∑
j=1

aj − aμ+1

bj

(31)

which implies that k − 1 < μ, that is, k ≤ μ. If k = μ, then (31)
implies that δ > τ . Alternatively, if k < μ, then δ > ak+1 ≥ aμ ≥
τ . In either case, for i = 1, . . . , k, ai−δ

bi
<

ai−τ
bi

≤ αi .
Next assume that (x∗, y∗) satisfies condition (iv) of Theorem 1

with k ∈ {1, . . . , n − 1}, that is, (x∗, y∗) satisfies (19). To prove
that x∗ ∈ X, it suffices to show that ai−ak+1

bi
≤ αi for i = 1, . . . , k.

Evidently,
∑k

j=1
aj −ak+1

bj
= B <

∑μ
j=1

aj −τ

bj
<

∑μ
j=1

aj −aμ+1
bj

,

implying that k < μ, ak+1 ≥ aμ ≥ τ , and for i = 1, . . . , k,
ai−ak+1

bi
≤ ai−τ

bi
≤ αi .

Necessity

Suppose (x∗, y∗) is a Nash equilibrium and it will be shown that it sat-
isfies the corresponding conditions. Recall that ν̂0 	= ∅. Let t ∈ ν̂0. Then,
pt (x

∗
t ) ≥ pt (αt ) = τ > 0 and Lemma 1(i) implies that

∑
j∈N y∗

j = 1,
in particular, y∗ 	= 0. Further, observation (B) and the last conclusion of
observation (C) of the proof of Theorem 1 are modified to:

B’ If y∗
u > 0 for u ∈ N̂ , then (by Lemma 1(i)) pu(x

∗
u) ≥ τ , that is,

x∗
u ≤ au−τ

bu
.

C’ If x∗
i <

ai−τ
bi

for some i ∈ N (that is, pi(x
∗
i ) > τ ), then for some

w ∈ N , y∗
w > 0 and pw(x∗

w) > τ , that is, x∗
w < aw−τ

bw
≤ αw , in

particular, aw ≥ pw(x∗
w) > τ , assures w ∈ N̂ .

Observations (A)–(E) of the necessity proof of Theorem 1 will be used.

i.
∑

j∈N̂

aj −τ

bj
< B:

It will be shown that (21) is satisfied with corresponding ξi ’s
and ρi ’s. As (x∗, y∗) ∈ X × Y it suffices to show that y∗

i = 0 for
i ∈ (N\N̂)∪ν̂−,

∑
j∈N y∗

j = 1 and x∗
i ≥ ai−τ

bi
for i ∈ N̂ (the latter

would imply that for i ∈ ν̂0, ai−τ
bi

≤ x∗
i ≤ αi = ai−τ

bi
and therefore

x∗
i = ai−τ

bi
). Consider u ∈ N \ N̂ . As pu(x

∗
u) ≤ au < τ ≤ pt (x

∗
t ),

u /∈ arg maxj∈N pj (xj ) and, by Lemma 1(i) or Lemma 1(ii),
y∗

u = 0. Next, assume that y∗
u > 0 for some u ∈ ν̂− and we

will establish a contradiction. The assumption y∗
u > 0 implies that

qu(y
∗
u) = cuy

∗
u > 0 and, by (B’), x∗

u ≤ au−τ
bu

< αu. It now follows

from Corollary 1 that
∑

j∈N̂ x∗
j = B >

∑
j∈N̂

aj −τ

bj
and therefore

for some v ∈ N̂ \ {u}, x∗
v > av−τ

bv
≥ 0 and, by (B’), y∗

v = 0 or

for some j ∈ N \ N̂ , x∗
j > 0 and, as we showed, y∗

j = 0 . But,
qu(y

∗
u) > 0 = cvy

∗
v = qv(y

∗
v ) or qu(y

∗
u) > 0 = cj y

∗
j = qj (y

∗
j ),

x∗
v > 0 or x∗

j > 0, and x∗
u < αu contradict Corollary 1. Next,

assume that x∗
u < au−τ

bu
≤ αu for some u ∈ N̂ and we will establish

another contradiction. As x∗
u < au−τ

bu
, (C’) implies that for some

w ∈ N̂ , y∗
w > 0 and x∗

w < aw−τ
bw

≤ αw . Replacing u by w in the
above arguments leading to a contradiction under the assumption
that y∗

u > 0 and x∗
u ≤ au

bu
< αu apply. So, (x∗, y∗) satisfies (21).

ii. B = ∑
j∈N̂

aj −τ

bj
:

It will be shown that for some ζ ≥ 0, (23) is satisfied with cor-
responding ρi ’s. We first prove that for each i ∈ N̂ , x∗

i ≥ ai−τ
bi

.

Assume that this is not the case and for some i ∈ N̂ , x∗
i <

ai−τ
bi

and we will establish a contradiction. By (C’), for some w ∈ N̂ :
y∗

w > 0, implying that qw(y∗
w) = cwy∗

w > 0, and x∗
w < aw−τ

bw
≤

αw ; thus, by Corollary 1,
∑

j∈N x∗
j = B = ∑

j∈N̂

aj −τ

bj
.

As x∗
w < aw−τ

bw
, it follows that for some v ∈ N \ {w}, either

v ∈ N\N̂ and x∗
v > 0, or v ∈ N̂ and x∗

v > av−τ
bv

> 0, implying that
pv(x

∗
v ) < τ . Hence, in either case y∗

v = 0 and qv(y
∗
v ) = cvy

∗
v = 0.

But, qw(y∗
w) = cwy∗

w > 0 = qv(y
∗
v ), x∗

w < αw and x∗
v > 0

contradict Corollary 1. So, indeed, x∗
i ≥ ai−τ

bi
for each i ∈ N̂ .

Consequently, B ≥ ∑
j∈N x∗

j ≥ ∑
j∈N̂ x∗

j ≥ ∑
j∈N̂

aj −τ

bj
= B,

implying that x∗
i = 0 for j ∈ N \N̂ and x∗

i = ai−τ
bi

for each i ∈ N̂ ,

that is, x∗ satisfies (23) (if μ ∈ ν̂− and aμ = τ , then aμ−τ

bμ
= 0).

It follows that x∗
i = 0 for i ∈ N \ N̂ , x∗

i = ai−τ
bi

= αi for each

i ∈ ν̂0, x∗
i = ai−τ

bi
< αi for each i ∈ ν̂−, x∗

i > 0 for i ∈ ν̂− \ {μ},
x∗

μ > 0 if aμ > τ , otherwise x∗
μ = 0. By Lemma 2 , qi(y

∗
i ) = ciy

∗
i

is a nonnegative constant for i ∈ ν̂− \ {μ}, say it equals ζ , further,
qμ(y∗

μ) = cμy∗
μ = ζ if aμ > τ and qμ(y∗

μ) = cμy∗
μ ≤ ζ if

aμ = τ , and qi(y
∗
i ) = ciy

∗
i ≥ ζ for i ∈ ν̂0. Finally, for i ∈ N \ N̂ ,

pi(x
∗
i ) ≤ ai < τ and (B’) implies that y∗

i = 0. So, y∗ satisfies
(23).

iii. 0 < B <
∑

j∈N̂

aj −τ

bj
:

Consider the “bar” model introduced under (iii) in the suffi-
ciency proof with the corresponding definitions of the ᾱi ’s and
X̄, and let (x∗, y∗) be a Nash equilibrium of the original model.
To show that (x∗, y∗) is a Nash equilibrium of the “bar” model,
it is sufficient to prove that for each x̄ ∈ X̄ \ X, Û I (x̄, y∗)
≤ Û I (x∗, y∗).

By (B’) and by Lemma 1(i), if y∗
i > 0 for i ∈ N̂ , then

pi(x
∗
i ) ≥ τ , that is, x∗

i ≤ ai−τ
bi

, and further, as pj (x
∗
j ) < τ for

j ∈ N \N̂ , y∗
j = 0 for j ∈ N \N̂ . Consider x̄ ∈ X̄\X. Then, there

are indexes v ∈ N such that av
bv

> αv , and x̄v > αv ≥ av−τ
bv

, imply-

ing that pv(x̄v) < τ , and so y∗
v = 0. As 0 < B <

∑
j∈N̂

aj −τ

bj
<∑

j∈N

aj −τ

bj
, there exists a w ∈ N̂ , such that x̄w < aw−τ

bw
and so

pw(x̄w) > τ . By (C’), for some r ∈ N̂ , y∗
r > 0 and x̄r < ar−τ

br
.

But, x̄v > av−τ
bv

, y∗
v = 0, x̄r < ar−τ

br
, and y∗

r > 0 contradict

Corollary 1. In particular, x̄ ∈ X̄ \ X cannot be a part of any Nash
equilibrium, and so Û I (x̄, y∗) ≤ Û I (x∗, y∗).

||

APPENDIX D: PROOF OF LEMMA 3

Part (i) is immediate from Theorem 1(i). As there are finitely many sin-
gular amounts which include

∑
j∈N

aj

bj
, the set of nonsingular amounts in

(0,
∑

j∈N

aj

bj
] is the union of disjoint open intervals to which Theorem 1(iii)

applies. In particular, (17) shows that on any open interval of nonsingular
amounts, each y∗

i (·) is the corresponding constant, proving (iii). Also, each
x∗

i (·) is linear and weakly decreasing in δ. As δ is linear and decreasing in B,
it follows that x∗

i (·) is linear and weakly increasing in B, further the slopes
of x∗

i are available from (17) and are as stated in the lemma — as they are

decreasing, and the concavity of x∗
i (·) on [∑i−1

j=1
aj −ai

bj
,
∑n

j=1
aj

bj
] follows.

To complete the proof of (ii), it remains to establish continuity of x∗
i (·) at
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singular values. For this purpose, express δ as a function of B [that is, write
δ(B)] and note that (17) assures that

lim
ε↓0

δ

⎛⎝ k∑
j=1

aj − ak+1

bj

− ε

⎞⎠ =
∑k

j=1
aj

bj
−

[∑k
j=1

aj −ak+1
bj

]
∑k

j=1
1
bj

= ak+1

and

lim
ε↓0

δ

⎛⎝k−1∑
j=1

aj − ak

bj

+ ε

⎞⎠ =
∑k

j=1
aj

bj
−

[∑k
j=1

aj −ak

bj

]
∑k

j=1
1
bj

= ak .

The continuity of each x∗
i (·) in B at singular amounts in now immediate

from (17) and (19).
Finally, to prove (iv), observe from (19) of Theorem 1(iv) that for

k ∈ N \ {n} and singular amount B = ∑k
j=1

aj −ak+1
bj

, the range of y∗
i (B)

depends (linearly) on the parameter η. Using (19), for i = 1, . . . , k, the

extreme value η = 0 yields
1
ci∑k

j=1
1
cj

= y∗
i (B − 0) as the highest value of

y∗
i (B), and the alternative extreme value η = 1∑k+1

j=1
ck+1
cj

yields

1 − 1∑k+1
j=1

ck+1
cj

ci

∑k
j=1

1
cj

=
∑k+1

j=1
ck+1
cj

− 1

(
∑k+1

j=1
ck+1
cj

)(ci

∑k
j=1

1
cj

)

=
∑k

j=1
ck+1
cj

(
∑k+1

j=1
ck+1
cj

)(ci

∑k
j=1

1
cj

)
=

1
ci∑k+1

j=1
1
cj

= y∗
i (B + 0)

as the lowest value of y∗
i (B); so, y∗

i (B) =
[
y∗

i (B − 0) =
1
ci∑k

j=1
1
cj

,

y∗
i (B + 0) =

1
ci∑k+1

j=1
1
cj

]
. Further, again using (19), 0 = y∗

k+1(B − 0) is

the lowest value of y∗
k+1(B) while

1
ck+1∑k
j=1

1
cj

is the highest; so, y∗
k+1(B) =

[y∗
i (B − 0) = 0, y∗

i (B + 0) =
1
ci∑k+1

j=1
1
cj

]. Finally, (19) assures that

y∗
i (B) = {0} for i = k + 2, . . . , n. ||

APPENDIX E: PROOF OF THEOREM 3

By Lemma 3(i), y∗(B) = {y ∈ Y (B) : yi = 0 for each i ∈ ν− and yi ≥
0 for each i ∈ ν0} for B >

∑
j∈N

aj

bj
and therefore (9), (4) assure that

Û I (x, y) and UV (x, y) given by (14) can now be rewritten as (Û I )∗(B) ≥ 0
and (UV )∗(B) = 0.

Consider k ∈ N and B ∈ Ik . By Lemma 3, (UV )∗(B) =∑k
i=1

[
ai − bix

∗
i (B)

]
y∗

i (B) and (Û I )∗(B) = ∑k
i=1 cix

∗
i (B)y∗

i (B) with
each x∗

i (·) linear and y∗
i (·) constant on Ik , implying that (UV )∗(·) and

(Û I )∗(·) are linear on Ik . The explicit expressions for the slopes of the
the x∗

i ’s and the value of the y∗
i ’s on Ik imply that the slopes of (UV )∗(·)

and (Û I )∗(·) are, respectively,

k∑
i=1

(−bi)

⎛⎝ 1
bi∑k

j=1
1
bj

⎞⎠ ⎛⎝ 1
ci∑k

j=1
1
cj

⎞⎠ =
⎛⎝ −1∑k

j=1
1
bj

⎞⎠ ⎛⎝ ∑k
i=1

1
ci∑k

j=1
1
cj

⎞⎠
= −1∑k

j=1
1
bj

;

and

k∑
i=1

ci

⎛⎝ 1
bi∑k

j=1
1
bj

⎞⎠ ⎛⎝ 1
ci∑k

j=1
1
cj

⎞⎠ =
⎛⎝ ∑k

i=1
1
bi∑k

j=1
1
bj

⎞⎠ ⎛⎝ 1∑k
j=1

1
cj

⎞⎠
= 1∑k

j=1
1
cj

;

the first set of constants are negative and increasing in k whereas the sec-
ond set is positive and decreasing in k. This completes the proof of (iii). To
complete the proof of (ii), it remains to show that for any singular amount
B, (UV )∗(B) is a singleton and that (UV )∗(·) is continuous at B. So, let B

be a singular amount. Lemma 3(ii) assures that x∗(B) is a singleton [to be
denoted x∗(B)] and therefore for all y∗ ∈ y∗(B), (UV )(x∗(B), y∗) equals
maxy∈Y (UV )(x∗(B), y) which is independent of y∗. So, (UV )∗(B) contains
a single value. Further, Lemma 3(iv) assures that this value equals the left
and right limits of (UV )∗(·) at B, completing the proof of (ii).

Finally, to prove (iv) consider singular amount B = ∑k
j=1

aj −ak+1
bj

where

k ∈ N . It then follows from (9) and parts (ii) and (iv) of Lemma 3, that (20)
can be written as

(Û I )∗(B) =
⎡⎣ k∑

j=1

cj

(
aj − ak+1

bj

) ⎛⎝ 1
cj∑k

u=1
1
cu

⎞⎠ ,

×
k∑

j=1

cj

(
aj − ak+1

bj

) ⎛⎝ 1
cj∑k+1

u=1
1
cu

⎞⎠⎤⎦ (32)

=
⎡⎣∑k

j=1

(
aj −ak+1

bj

)
∑k

j=1
1
cj

,

∑k
j=1

(
aj −ak+1

bj

)
∑k+1

j=1
1
cj

⎤⎦ , (33)

(Û I )∗(B − 0) =
∑k

j=1

(
aj −ak+1

bj

)
∑k

j=1
1
cj

and (Û I )∗(B + 0) =
∑k

j=1

(
aj −ak+1

bj

)
∑k+1

j=1
1
cj

. ||
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