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Abstract

We consider a two-echelon supply chain consisting of a single supplier (producer) and a retailer. The
supplier determines the wholesale price with a production cost decreasing with experience. The retailer
orders products from the supplier to meet demands. Negative effects of a vertical competition in static
supply chain models are typically attributed to a double marginalization. Using an intertemporal supply
chain problem, defined by a differential game, we show that in addition to the ‘‘cost’’ of double
marginalization, the margin gained from reducing production costs affects the supply chain performance as
well. In our analysis, performance is shown to deteriorate even more than the deterioration observed in
static problems with no learning (experience). To improve the performance, we provide a time-variant
version to the well-known, pure, two-part tariff strategy, which in its dynamic framework may coordinate
the supply chain only partially. Efficient coordination in a supply chain is shown to be possible if a mixed
two-part tariff strategy is employed, however.

Keywords: supply chains; pricing; production control; differential games

1. Introduction

A retailer’s access to customer information and purchasing behavior as well as its ease in changing
prices due to new technologies (including Internet and IT) has motivated extensive research into
dynamic pricing in general and continuous-time pricing strategies in particular. Essential attention
has been given to (i) dynamic pricing when there are learning effects induced by economies of scale
(see, e.g., Kalish, 1983; Jorgenson et al., 1999); (ii) inventory considerations (see the survey by
Elmaghraby and Keskinocak, 2003) and (iii) coordinated pricing and production/procurement
decisions (see surveys by Chan et al., 2003; Yano and Gilbert, 2002; Cachon, 2003). However,
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despite this broad range of research, relatively few studies are devoted to the continuous-time
intra-competition between supply chain parties.
The effect of competition in a static framework on static supply chains and their performance is,

however, well studied. Extensive reviews focusing on such competition-related aspects include
among others integrated inventory models (Goyal and Gupta, 1989), game theory in supply
chains (Cachon and Netessine, 2004), price quantity discounts (Wilcox et al., 1987), and
competition/coordination (Leng and Parlar, 2005).
Owing to technical difficulties inherent in continuous-time differential games, the supply chain

management literature has been primarily concerned with deterministic models (Cachon and
Netessine, 2004; Kogan and Tapiero, 2007). Jorgenson (1986) derives an open-loop Nash
equilibrium under static deterministic demand, d(t)5 a(t)� b(t)p(t), with price p(t) being a
decision variable; demand potential a(t) and customer sensitivity b(t) being constant (and thereby
not affecting the supply chain dynamics). Eliashberg and Steinberg (1987) use open-loop
Stackelberg solution concepts in a game with a manufacturer and a distributor (both with
unlimited capacity) involving quadratic seasonal demand potential a(t) and constant sensitivity
b(t). Desai (1992) allows a demand potential to be controlled by an additional decision variable.
To address seasonal demands, Desai suggests a numerical analysis for a general case of the open-
loop Stackelberg equilibrium for a sine function a(t), constant customer sensitivity b(t) and
unlimited manufacturer and retailer capacities (Desai, 1996). To model market interaction
with no learning effect, the prices have also been assumed to evolve over time according to some
rules (e.g., Sticky Prices) defined thereby as state rather than decision variables. The
corresponding games and equilibria are analyzed in Simaan and Takayama (1978), Fershtman
and Kamien (1987, 1990), Tsutsui and Mino (1990) and Fibich et al. (2003). For additional
applications of differential games in management science and operations research, we refer
interested readers to reviews by Feichtinger and Jorgenson (1983), Kogan and Tapiero (2007) and
He et al. (2007).
Unlike the studies quoted above which considered the effect of inventories on supply chains, we

assume the parties have sufficient capacity and focus on the dynamic effects of production
experience on supply chain competition. Further, synchronized firms in supply chains will seek to
reduce inventories so that their quantitative importance will be reduced. Thus, our analysis
considers a two-echelon supply chain with a supplierFthe producer and a retailer who do not
cooperate in maximizing their profits but collaborate otherwise in maintaining a synchronized
delivery system. The supplier determines the wholesale price while the retailer orders products
synchronized with his demand. The demand is assumed to be endogenous in retail price and
exogenous in time while the unit production cost decreases as the cumulative production
experience increases (learning by doing).
Learning by doing, extensively observed and studied (Thorndike, 1927) has revealed two

essential categories (Newell et al., 2001): power law and exponential functions.
In a power law, learning rates are decreasing and there is no single time scale (Schroeder, 1991).

Accordingly, a learning curve is evaluated when cumulative production doubles. This approach
has been used extensively to describe the effects of learning by doing as well as the combined effect
of experience and other factors (such as technology cost trends). Systematic reviews of this
literature can be found in Arrow (1962), Yelle (1979), Dutton and Thomas (1984) and McDonald
and Schrattenholzer (2001).

K. Kogan and C. Tapiero / Intl. Trans. in Op. Res. 15 (2008) 461–479462

r 2008 The Authors.
Journal compilation r 2008 International Federation of Operational Research Societies



Exponential functions ‘‘laws’’ correspond, however, to a constant learning rate and to a fixed
time-scale with learning rate g, whose inverse defines the intrinsic time-scale of the system. Thus, a
plot of the performance logarithm will yield a linear graph with slope g. Such learning curves were
observed in experiments performed by Cohn and Tesauro (1992) with main effects due to learning
by doing. These experimental findings then were sustained further by theoretical results of
Schuurmans (1997) and Gu and Takahashi (2000). Moreover, it has been shown that under
mature technologies (and, thus, low g) learning curves exhibit a linear behavior in cumulative
production (see, e.g., the report by the Australian Business Council for Sustainable Energy, 2003).
Such observations thus justify the use of Taylor series expansions in approximating the nonlinear
effects of exponential learning by doing curves.
In this paper we also follow the stream of research employing exponential learning and assume

in addition mature technologies so that the ‘‘exponential learning by doing’’ can be effectively
justified with Taylor series expansions. In the next section (Section 2), we formulate the problem
and assume (unlike the references quoted above) that both the demand potential and the customer
sensitivity can have a variety of functional forms resulting in a general demand, rather than that
specified by a linear price function. We first determine a system-wide optimal solution (Section 3)
for a centralized supply chain, which is used as a benchmark and to compare it with a competitive
solution. In Section 4 we contrast the static model, which ignores the effects of experience with our
inter-temporal, differential game-based approach. We also compare the effects of vertical
competition on dynamic pricing and a myopic pricing policy, which ignores the long-run impact
of production experience. Finally, facets of supply chain coordination are discussed in Section 5
and insights are provided to mitigate the effects of competition. In particular, we show that in an
intertemporal (differential game) framework, a two-part tariff price strategy can be interpreted
and implemented in a number of ways. For example, by requiring a fixed payment and setting the
wholesale price identical to his current production cost, the supplier may only partially coordinate
the supply chain. Greater effect can be achieved if the fixed payment is combined with a mixed
strategy, where wholesale prices are chosen randomly around the system-wide optimal production
cost. Our results are summarized in Section 6. All proofs are relocated to Appendix A in order to
simplify the presentation of our results and conclusions.

2. Problem formulations

Consider a two-echelon supply chain consisting of a single supplier (manufacturer) selling a
product type to a single retailer over a period of time, T. The supplier and the retailer have
sufficient capacity to deliver in a synchronized manner and process, respectively, the quantity q
required at time t. In such an environment, inventory related costs are negligible. We also assume
the period during which the parties interact is long enough so that customer’s demand (assumed
endogenous in the product price), evolve also exogenously over time. Such an assumption justifies
the use of Bertrand’s model of pricing competition with the quantity sold per time unit, q,
depending not only on the product price, p, @q@p < 0 and @2q

@p2
)0, but also on the time t elapsed,

q5 q(p, t) and @qðp; tÞ
@t not necessarily equal to zero. An exogenous change in demand is due to the

interactions of various factors including seasonal fluctuations, fashion trends, holidays, and
customer fatigue. When cumulative sales,

R t
0 qðpðsÞ; sÞds, (i.e., the experience) have little effect on
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these factors, the dynamic changes can be dealt with in a straightforward manner by setting price
adjustments as in traditional and static supply chain models. However, if production (sales) of
large quantities result in a learning effect, this will reduce potentially the unit production cost, c(t),
then there is a long-term impact of experience that cannot be studied in the framework of static
models.
Let the retailer’s price per unit be p(t)5w(t)1m(t), where m(t) is the retailer’s margin at time t

and w(t) is the supplier’s wholesale price. Then, if both parties, the supplier and the retailer, do not
cooperate to maximize the overall profit of the supply chain over a period T, their decisions, w(t)
and m(t), affect each other’s revenues at every point of time, resulting in a differential game. In
such a game, the supplier chooses a wholesale price, w(t), at each time point t and the retailer
selects a margin, m(t) (and thus the quantity q(p, t) ordered at a price w(t) sold to customers at a
price p(t)5w(t)1m(t)). Consequently, the retailer orders q(p, t) at each time t while the supplier
‘‘learns’’ by its cumulative production, resulting in a reduced unit production cost, c(t). We thus
have the following profit maximization problems.

2.1. The supplier’s problem

max
w

Jsðw; mÞ ¼ max
w

Z T

0

ðwðtÞ � cðtÞÞq wðtÞ þmðtÞ; tð Þdt; ð1Þ

s.t.

_cðtÞ ¼ �gq wðtÞ þmðtÞ; tð Þ; cð0Þ ¼ C; ð2Þ

wðtÞ*cðtÞ; ð3Þ

where g is the learning rate. Note, that for small g (of mature technologies assumed in this paper)
the general exponential learning curve, c(t)5 c(0)1e� gX(t), where XðtÞ ¼

R t
0 qðpðsÞ; sÞds is the

cumulative production, is reduced to c(t)5 c(0)11� gX(t) by a Taylor series expansion.
Differentiating this equation we immediately obtain (2). In addition, we assume that the unit
production cost cannot become negative for this small g even under the maximum possible
production experience (as is the case in real life), i.e., C � g

R T
0 qð0; tÞdt*0. Then the sufficient

boundary condition is

g)
CR T

0 qð0; tÞdt
:

2.2. The retailer’s problem

max
m

Jrðw; mÞ ¼ max
m

Z T

0

mðtÞq wðtÞ þmðtÞ; tð Þdt; ð4Þ

s.t.

mðtÞ*0; ð5Þ

qðwðtÞ þmðtÞ; tÞ*0: ð6Þ
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Equations (1)–(6) assume a non-cooperative behavior of the supply chain parties which affects
the overall supply chain performance. However, when the supply chain is vertically integrated or
centralized, so that a single decision-maker is ‘‘in charge’’ of the supply chain, the following
centralized benchmark problem results.

2.3. The centralized problem

max
m;w

Jðw; mÞ ¼ max
m;w
½Jrðw; mÞ þ Jsðw; mÞ�

¼ max
m;w

Z T

0

ðwðtÞ þmðtÞ � cðtÞÞqðwðtÞ þmðtÞ; tÞdt;
ð7Þ

s.t.

ð2Þ � ð3Þ and ð5Þ � ð6Þ:
We henceforth omit the independent variable t wherever the dependence on time is obvious.

3. The system-wide optimal solution

To evaluate the best possible performance of the supply chain, we first study the centralized
problem by employing the maximum principle. Specifically, the Hamiltonian for the problem
(2)� (3), (5)� (6) and (7) is reduced to

HðtÞ ¼ ðwðtÞ þmðtÞ � cðtÞÞqðwðtÞ þmðtÞ; tÞ � cðtÞgqðwðtÞ þmðtÞ; tÞ; ð8Þ
where the co-state variable c(t) is determined by the co-state differential equation

_cðtÞ ¼ � @HðtÞ
@cðtÞ ¼ qðwðtÞ þmðtÞ; tÞ; cðTÞ ¼ 0: ð9Þ

Note that since function (7) is strictly concave, while all constraints are linear, the maximum
principle presents not only necessary but also sufficient optimality conditions and the optimal
solution which satisfies these conditions is unique.
The Hamiltonian (8) can be interpreted as the instantaneous profit rate, which includes the

value c _c of the negative increment in unit production cost created by the economy of scale.
The co-state variable c is the shadow price, i.e., the net benefit from reducing the unit produc-
tion cost by one more monetary unit at time t. The differential (9) states that the marginal profit
from reducing the production cost at time t is equal to the demand rate at this point. From (9) we
have

cðtÞ ¼ �
Z T

t

qðwðsÞ þmðsÞ; sÞds; ð10Þ

which implies that c(t)o0 for 04t4T.
According to the maximum principle, the Hamiltonian is maximized by admissible controls at

each point of time. That is, by differentiating (8) with respect to m(t) and w(t) and taking into
account that p(t)5w(t)1m(t), we have two identical optimality conditions defined by the
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following equation

qðwðtÞ þmðtÞ; tÞ þ ðwðtÞ þmðtÞ � cðtÞ � cðtÞgÞ @qðwðtÞ þmðtÞ; tÞ
@pðtÞ ¼ 0;

where the shadow price (co-state variable) c(t) is determined by (10) and the production cost
(state variable) c(t) is found from (2)

cðtÞ ¼ C � g
Z t

0

qðp; sÞds: ð11Þ

Therefore only the optimal price matters in the centralized problem, p�*c, while the wholesale
price, wXc, and the retailer’s margin, mX0, can be chosen arbitrarily so that p� ¼ wþm. This is
due to the fact that w and m represent internal transfers of the supply chain. Thus, the proper
notation for the centralized payoff function is J(p) rather than J(m,w) and the only optimality
condition is

qð p�; tÞ þ ð p� � c� cgÞ @qð p
�; tÞ

@p
¼ 0: ð12Þ

Explicitly, p� is the unique optimal price if it satisfies Equation (12) and p�ðtÞ*cðtÞ, where c
and c are determined by (11) and (10), respectively.
Let the maximum price be P(t) at time t, such that q(P(t))5 0. Naturally, assume that P4c

and, since, c40, P4c1cg. Thus we may verify that if p� c�cgX0, then

@2H

@p2
¼ 2

@qð p; tÞ
@p

þ ð p� c� cgÞ @
2qð p; tÞ
@p2

< 0; ð13Þ

and (12) has an interior solution such that P > p�*cþ cg. This implies that p�ðtÞ > cðtÞ does
not necessarily hold at each point of time. At such time points the supply chain is not profitable
and the boundary solution p�ðtÞ ¼ cðtÞ will be optimal.
Note, that by setting g at zero we obtain an optimality condition for the corresponding static

model which ignores the economy of scale effects:

qð pM ; tÞ þ ð pM � cÞ @qð p
M; tÞ
@p

¼ 0: ð14Þ

Referring to the static optimal solution pM at time t as the myopic solution (since it ignores the
future learning effect, the long-run effect) and taking into account that c(t)40 for 04t4T, we
find that a myopic attitude leads to overpricing.

Proposition 1. In intertemporal centralized pricing (2)� (3),(5)� (6) and (7), if the supply chain
is profitable, i.e., p4c, the myopic retail price will be greater than dynamic pricing and the myopic
retailers will order less than the system-wide optimal (centralized) price and order quantity
respectively for 04toT.

According to Proposition 1, myopic pricing derived from static optimization is not optimal and
an intertemporal approach is needed to account properly for the effects of an economy of scale.
This does not mean that dynamic optimization necessarily leads to time-dependent prices,
however. In what follows we show that if the demand does not explicitly depend on time,
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q(p, t)5 q(p), the optimal centralized pricing strategy is independent of time. Further, an
exogenous increase in demand, for example, results in a price increase, as it is typically the case in
monopolistic pricing. This property is stated in the following proposition under the assumption

that if @qðp; tÞ@t < 0, then @2qðp; tÞ
@p@t )0 and if @qðp; tÞ@t > 0, then @2qðp; tÞ

@p@t *0.

Proposition 2. In intertemporal centralized pricing (2)� (3),(5)� (6) and (7), if the supply chain

is profitable, i.e., p4c, and there is a demand time pattern q(p, t) such that @qðp; tÞ
@t exists, then the

system-wide optimal price monotonically increases as long as @qðp; tÞ
@t > 0, and vice versa as long as

@qðp; tÞ
@t < 0. Otherwise, if

@qðp; tÞ
@t ¼ 0 at an interval of time, then the system-wide optimal price and

order quantity are constant over the interval.

4. Intra-competition in supply chain: game analysis

We consider now a decentralized supply chain characterized by non-cooperative firms and assume
that both players make their decisions simultaneously. The supplier chooses a wholesale price w
and the retailer selects a price, p, or equivalently a margin, m, and hence orders q(p, t) products at
each t, 04t4T. Since this is a deterministic game, the retailer sells all the products that he has
ordered (thus, there are no inventories and orders are synchronized). Using the maximum
principle for the retailer’s problem, we have

HrðtÞ ¼ mðtÞqðwðtÞ þmðtÞ; tÞ � crðtÞgqðwðtÞ þmðtÞ; tÞ; ð15Þ
where the co-state variable cr(t) is determined by

_crðtÞ ¼ �
@HrðtÞ
@cðtÞ ¼ 0; crðTÞ ¼ 0: ð16Þ

Thus, cr(t)5 0 for 04t4T and the supplier’s production experience does not affect the retailer
when parties do not cooperate. That is, myopic pricing is optimal for the non-cooperative retailer.
The retailer can in this case simply use the first-order optimality condition to derive a pricing
strategy for each time point:

@Jrðm; wÞ
@m

¼ qðwþm; tÞ þm
@qðp; tÞ
@p

¼ 0: ð17Þ

It is easy to verify that since the retailer’s objective function is strictly concave in m, Equation
(17) has a unique solution. Or, by the same token, the retailer’s best response function is unique.
Comparing (12) and (17), we conclude that if the retailer ignores the long-term dynamic effects
of production experience, the supply chain performance deteriorates even more than in the
corresponding static case with no learning.

Proposition 3. In a dynamic vertical competition (or the differential pricing game), myopic pricing is
optimal for the retailer. If the retailer and supplier profits at each t, m40 and w4c, the retail price
will be greater and the retailer’s order will be less than the system-wide optimal (centralized) price
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and order quantity respectively. Moreover, these gaps are even larger than those induced by the
corresponding static pricing game.

Note, that from Proposition 3 and Equation (2) it immediately follows that the system-wide
optimal production costs, c�ðtÞ, is lower than the equilibrium production cost for t40. Moreover,
the conclusion that vertical intertemporal pricing competition increases retail prices and decreases
order quantities compared to a system-wide optimal solution does not depend on the type of game
played. Specifically, it does not depend on whether both players make a simultaneous decision or
the supplier first sets the wholesale price and thus plays the role of the Stackelberg leader (see, e.g.,
Basar and Olsder, 1982). As a result, the overall efficiency of the supply chain deteriorates under
intertemporal vertical competition. Furthermore, in addition to the well-known double
marginalization effect, we observe the consequences of the learning effect. That is, comparing
(12) and (17), we find that deterioration in the supply chain performance is due to the retailer
myopically ignoring not only the supplier’s margin, w� c, from sales at each time point but also
the supplier’s profit margin from a production cost reduction, cg. Because of the latter, the
deterioration under a competing inter-temporal supply chain is even greater than the one that
occurs in the static pricing game, as stated in Proposition 3. Such a difference, however, shrinks
over time as the shadow price of cost reduction tends to zero by the end of the product production
period T.
To determine the Nash equilibrium which corresponds to the simultaneous moves of the

supplier and retailer, we next apply the maximum principle to the supplier’s problem. Specifically,
we construct the Hamiltonian

HsðtÞ ¼ ðwðtÞ � cðtÞÞqðwðtÞ þmðtÞ; tÞ � csðtÞgqðwðtÞ þmðtÞ; tÞ;
where the co-state variable cs(t) is determined by the co-state differential equation

_csðtÞ ¼ qðwðtÞ þmðtÞ; tÞ; csðTÞ ¼ 0: ð18Þ
Differentiating the Hamiltonian with respect to wholesale price w we have

qðp; tÞ þ ðw� c� csgÞ
@qðp; tÞ
@p

¼ 0; ð19Þ

which implies that an interior optimal solution determined by (19) is such that w� c�csg40.
Next, verifying the second derivative of the Hamiltonian, we find that if w� c�csg40, then

2
@qðp; tÞ
@p

þ ðw� c� csgÞ
@2qðp; tÞ
@p2

< 0:

Taking into account that a myopic wholesale price is obtained by setting the learning effect g at
zero, we observe from Equation (19) and the last inequality that (i) the severe problem of double
marginalization persists since the supplier ignores the retailer’s margin m; (ii) the intertemporal
wholesale price is lower than the myopic wholesale price. This implies that the performance of the
supply chain further degrades if, in addition to the double marginalization effect, the supplier
adopts myopic attitude. Recall that the optimal solution for the retailer is myopic in the
intertemporal setting of the decentralized supply chain. It is easy to verify that the supplier’s
objective function is strictly concave in w and, thus, the supplier’s best response (19) is unique as
well. Thus, the Nash equilibrium (wn,mn) is found by solving simultaneously (19) and (17), which
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results in

w� c�m� csg ¼ 0 and qðcþ 2mþ csg; tÞ þm
@qðcþ 2mþ csg; tÞ

@p
¼ 0: ð20Þ

Note that if the second equation of (20) has a solution in m, then this solution is such that
p5 c12m1csg40, w� c�csg40. Then the second derivative of the second equation of (20) with
respect to m yields:

3
@qðcþ 2mþ csg; tÞ

@p
þ 2m

@2qðcþ 2mþ csg; tÞ;
@p2

< 0: ð21Þ

The latter result does not ensure that w5 c1m1csgXc. We conclude with the following.

Proposition 4. Let cs be determined by (18), c by (11) and let the dynamic pair (l, Z) be a solution of
the system (20) in w and m, respectively. If min{P� c, Z}X�csg, then the pair (wn 5 l, mn 5 Z)
constitutes a unique open-loop Nash equilibrium of the differential pricing game with
04�csgomno(P� c�csg)/25P� l.

Although, the condition for the Nash equilibrium, min{P� c, Z}X�csg, is stated in terms of
the co-state variable, a sufficient condition can be obtained by assuming the maximum value for
the demand q(c, t), i.e., minfPðtÞ � cðtÞ; ZðtÞg*g

R T
t qðc; sÞds. Note that if c is not replaced with

its expression (11), then the solution of Equation (20) at time t becomes a function of the state
variable c, and accordingly can be viewed as a closed loop Nash equilibrium. Differentiating both
equations of Equation (20), we find that

_m

"
3
@qð p; tÞ
@p

þ 2m
@2qð p; tÞ
@p2

#
¼ � @qð p; tÞ

@t
�m

@2qð p; tÞ
@p@t

: ð22Þ

Based on Equation (22) we next show that similar to the centralized supply chain, the
equilibrium pricing trajectory with respect to the wholesale price and retailer’s margin is
monotonous under intertemporal competition if the demand time pattern is monotonous. In
contrast to the centralized system, where the price p� barely matters and the only requirement for
w and m is wþm ¼ p�, the competition induces a synchronous rate of change of the margins,
_w ¼ _m. This is shown in the following proposition assuming that all conditions of Proposition 4
hold.

Proposition 5. For the differential pricing game, if the supply chain is profitable, and there is a

demand time pattern q(p, t) such that
@qðp; tÞ
@t exists, then the supplier’s wholesale price and the

retailer’s margin monotonically increase at the same rate as long as
@qðp; tÞ
@t > 0, and they decrease as

long as
@qðp; tÞ
@t < 0. If

@qðp; tÞ
@t ¼ 0 at an interval of time, then the Nash equilibrium does not depend on

time at the interval.

To highlight our results, we consider a demand linear in price, q(p, t)5 a(t)� bp, with a(t) first
being an arbitrary function of time. Then we plot the solutions for specific supply chain
parameters.
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4.1 Example

Let the demand be linear in price with a time-dependent customer demand potential a(t),

q(p, t)5 a(t)� bp, a4bC. Because the demand requirements, @q@p ¼ �b < 0 and @2q
@p2
¼ 0 are met for

the selected function, we employ Proposition 4 to solve the system (20), which, for a linear
demand, takes the following form:

a� bðcþ 2mn þ cgÞ � bmn ¼ 0; ð23Þ

wn ¼ cþmn þ cg: ð24Þ
Using Equation (22) or, equivalently, by differentiating (23) and (24) we have _wn ¼ _mn ¼ _a

3b
and thus:

mnðtÞ ¼ mnðTÞ � aðTÞ
3b
þ aðtÞ

3b
; wnðtÞ ¼ wnðTÞ � aðTÞ

3b
þ aðtÞ

3b
:

In addition, we obtain from (23) aðTÞ � bcnðTÞ � 3bmnðTÞ ¼ 0. Thus, mnðTÞ ¼ aðTÞ
3b
� cnðTÞ

3
.

However, according to (24), we have wn(T)5 cn(T)1mn(T), that is, wnðTÞ ¼ aðTÞ
3b þ

2cnðTÞ
3 .

Substituting mn and wn, we find

cnðTÞ ¼ C � g
Z T

0

aðtÞ � b
2aðtÞ
3b
þ cnðTÞ

3

� �� �
dt; ð25Þ

which results in

cnðTÞ ¼ 3C � gAðTÞ
3� gbT

; ð26Þ

where AðTÞ ¼
R T
0 aðtÞdt.

We next follow our assumption that the system parameters are such that the terminal
production cost, cn(T), is positive, no matter how experienced the manufacturer becomes, i.e.,

gbTo3 and 3C4gA(T). Consequently, if
aðtÞ
3b

*
3C�gAðTÞ
3ð3�gbTÞ , then the Nash equilibrium of the

differential pricing game under linear in price demand is

wnðtÞ ¼ aðtÞ
3b
þ 2ð3C � gAðTÞÞ

3ð3� gbTÞ and mnðtÞ ¼ aðtÞ
3b
� 3C � gAðTÞ

3ð3� gbTÞ ; ð27Þ

Otherwise, at least one of the parties is not always profitable and the equilibrium involves
boundary solutions at some intervals of time. Next, the overall price, mn1wn, that the retailer
charges and the quantity he orders are

pnðtÞ ¼ 2aðtÞ
3b
þ 3C � gAðTÞ

3ð3� gbTÞ and qnðtÞ ¼ aðtÞ
3
� 3C � gAðTÞ

3ð3� gbTÞ b; ð28Þ

respectively. To find the system-wide optimal solution (12), determined for the linear demand
function by the equation

a� bp� � ðp� � c� cgÞb ¼ 0; ð29Þ
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we first differentiate it with respect to time to obtain _p� ¼ _a
2b
. Then from (29) we have the terminal

boundary condition aðTÞ þ bcðTÞ � 2bp�ðTÞ ¼ 0, that is, aðTÞ
2b
þ cðTÞ

2
¼ p�ðTÞ. Thus, p� ¼ a

2b
þ cðTÞ

2
.

Substituting found centralized solution into (2) we have

cðTÞ ¼ C � g
Z T

0

aðtÞ � b

 
aðtÞ
2b
þ cðTÞ

2

!
dt; ð30Þ

which results in

cðTÞ ¼ 2C � gAðTÞ
2� gbT

: ð31Þ

Comparing (25) and (3) and taking into account that a4bC, we observe that even if the
terminal production costs in the right-hand side of these equations are identical c(T)5 cn(T), the
Nash cost cn(T) in the left-hand side of (25) is greater than c(T) for the centralized case (Equation
(30)). Consequently, assuming that gbTo2 implies gbo1 and we have, when comparing (26)
and (31),

2C � gAðTÞ
2� gbT

<
3C � gAðTÞ
3� gbT

: ð32Þ

Then the system-wide optimal price that the retailer charges his customers and the quantity he
orders are

p�ðtÞ ¼ aðtÞ
2b
þ 2C � gAðTÞ

2ð2� gbTÞ and q�ðtÞ ¼ aðtÞ
2
� 2C � gAðTÞ

2ð2� gbTÞ b: ð33Þ

Using inequality (32), one can immediately observe that both terms of the price-defining

equation (33),
aðtÞ
2b

and
2C�gAðTÞ
2ð2�gbTÞ , are smaller than the corresponding terms of the Nash price in

Equation (28), as stated in Proposition 3.

4.2. A numerical application

In what follows, we illustrate with Maple the Nash solution (28) for specific parameters of the
differential pricing game. Let the demand potential a(t) be exponentially decreasing over time,
a(t)5 10e� 0.1t. Other system parameters are: b5 0.1, C5 11, T5 8, g5 0.05. We first define the
potential a(t) and its cumulative value A(T) with Maple:

a :¼10eð�0:1tÞ

A :¼100:� 100:eð�0:1000000000TÞ:

Next we determine the Nash wholesale price w; margin m; price p; system-wide optimal price p�;
quantity q; shadow price (co-state variable) c; and production cost (state variable) c:
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w :¼ 10

3

eð�0:1 tÞ

b
þ
2
�
3C � g

�
100:� 100:eð�0:1000000000TÞ

��
9� 3gbT

m :¼ 10

3

eð�0:1 tÞ

b
�
3C � g

�
100:� 100:eð�0:1000000000TÞ

�
9� 3gbT

p :¼ 20

3

eð�0:1 tÞ

b
þ
3C � g

�
100:� 100:eð�0:1000000000TÞ

�
9� 3gbT

q :¼ 10

3
eð�0:1 tÞ �

�
3C � g

�
100:� 100:eð�0:1000000000TÞ

��
9� 3gbT

c :¼0:3333333333
�
300:eð�0:1000000000 tÞ � 57:721256649 eð�0:1000000000 tÞbT þ 3:t C b

� 57:72156649 b tþ 57:72156649 b t eð�0:1000000000TÞ � 300:eð�0:1000000000TÞ

� 3:C bT þ 57:72156649 bT
�
=ð�3:þ 0:5772156649 bTÞ

c :¼C � 0:1924052216
�
� 300:þ 57:72156649 bT þ 300:eð�0:1000000000 tÞ

� 57:72156649 eð�0:1000000000 tÞ bT þ 3:b tC � 57:72156649 b t

þ 57:72156649 b t eð�0:1000000000TÞ
�
=ð�3:þ 0:5772156649 bTÞ

p� :¼50:eð�0:1 tÞ þ 4:336734694þ 1:275510204eð�0:8000000000Þ:

Finally, we substitute the chosen system parameters into the Nash equations and plot the
results (see Figs 1–3).
In Fig. 1 we observe that the Nash retail price is higher than the system-wide optimal price and

thus the Nash demand (the quantity of products ordered and sold) is lower than the system-wide
optimal demand, as shown in Proposition 3.

5. Coordination

As shown previously, the negative effects of an intertemporal vertical competition is due to a
double marginalization persistent at each time point as in static models and to a dynamic learning
effect in economy of scale. It is thus the learning effect that induces a new margin compared with
the corresponding static pricing game. In contrast to margins from sales, this new margin is
gained from a production cost reduction. Thus, deterioration takes place if the retailer ignores
both the supplier’s profit margin, w� c, and the supplier’s margin from cost reduction, �csg.
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Specifically, recalling that p5w1m, the retailer’s best response is

qðp; tÞ þm
@qðp; tÞ
@p

¼ 0;

which implies that, although the demand depends on two margins, w1m, and the supplier has an
added margin resulting from cost reduction, the retailer takes into account only his margin m
rather than ordering with respect to the centralized approach (12)

qð p�; tÞ þ ð p� � c� cgÞ @qðp
�; tÞ

@p
¼ qð p�; tÞ þ ðw� þm� � c� cgÞ @qð p

�; tÞ
@p

¼ 0

10

1 2 3 4

t

Co–state, psi

production cost, c

5 6 7 8

5

0

–5

–10

–15

Fig. 2. Nash equilibrium: evolution of the shadow price and production cost.
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Fig. 1. Nash equilibrium: retail price, retailer’s margin and supplier’s wholesale price versus system-wide optimal

retail price.
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and thus, adding the supplier’s margins w� c and �csg to m. At the same time, from Equation
(19) we observe that the supplier ignores the only margin, m, which the retailer has when setting
the wholesale price.
For a producer, an essential question is, of course, how to induce the retailer to order more,

while for the retailer the question is how to induce the supplier to reduce the wholesale price.
These issues pertain to how we coordinate the supply chain and increase its profits. It turns out in
our analysis that the two-part tariff approach widely employed in static supply chain approaches
coordinates supply chains functioning in dynamic conditions as well. However, in contrast to
static models, the two-part tariff allows for the implementation of different strategies, which
do not necessarily result in perfect coordination. That is, an optimal solution under vertical
competition may not converge to the system-wide optimal solution. Specifically, if the supplier is
the leader, he can set the wholesale price equal to his production cost, but charge the retailer with
a fixed (possibly time-dependent) fee. With this dynamic version of the two-part tariff strategy,
the supplier induces the retailer to order more products and regulates his share in the total supply
chain profit without a special contract.
To show the effect of the dynamic two-part tariff on the supply chain, let the supplier be a

leader who first sets the wholesale price w(t) � c(t), then the Hamiltonian of the retailer’s problem
takes the following form

HðtÞ ¼ mðtÞqðcðtÞ þmðtÞ; tÞ � crðtÞgqðcðtÞ þmðtÞ; tÞ; ð34Þ

where the co-state variable cr(t) is determined by

_cr ¼ ðcrg�mÞ @qðcþm; tÞ
@p

; cðTÞ ¼ 0: ð35Þ

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

0 1 2 3 4
t

Demand, q

5 6 7 8

Fig. 3. Nash equilibrium: evolution of the demand.
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Then the margin the retailer sets is found by differentiating the Hamiltonian with respect
to m,

qðcþm; tÞ þ ðm� crgÞ
@qðcþm; tÞ

@p
¼ 0: ð36Þ

Comparing (12) and (36) we observe that the retailer orders a system-wide optimal quantity if
both w(t) � c(t) and cr � c hold (the retailer’s shadow price is identical to the system-wide
shadow price which, with respect to (35) and (9), cannot hold). In other words, the retailer
accounts for a learning effect with a shadow price cro0 instead of co0. Accordingly, by setting
w(t) � c(t) and charging fixed fees for orders, the supplier eliminates double marginalization and
also induces the retailer to partially take into account the supplier’s margin from cutting the
production cost. However, the optimal retailer’s response will never be equal to the system-wide
optimal solution. The explanation of the dynamic two-part tariff’s partial efficiency is due to the
dynamics of the cumulative memory. Repeated setting of the marginal price to w(t)5 c(t) during a
period of time, transforms the decision or control variable w(t) into a state variable, identical to
the state variable c(t) whose dynamic properties are known and can thus be accounted for by the
retailer. This is in contrast to memoryless static models, which do not account for previous
settings or future effects.
We also note that since cr(T)5c(T)5 0, c tends to cr over time. This implies that time has a

coordinating effect on the supply chain which becomes perfectly coordinated with the dynamic
two-part tariff by the end of the production period. This passive way, however, is not the only way
to coordinate and improve the supply chain profit with a two-part tariff. An alternative approach
consists in setting the wholesale price equal to the system-wide, time-dependent, production cost,
wðtÞ � c�ðtÞ. This time-variant two-part tariff strategy implies that the wholesale price is only a
function of time rather than only of the learning experience. Consequently, w(t) remains a decision
variable and the supply chain can be perfectly coordinated. The disadvantage of this two-part
tariff price, however, is that since the wholesale price will follow exactly the evolution of the
supplier production cost, the retailer may still interpret it as the dynamic two-part tariff.
Consequently, the retailer may deviate from the system-wide optimal order quantity at some point
in time. To prevent this type of time-inconsistency, the supplier may choose another type of two-
part tariff strategy. For example, the supplier, instead of choosing pure strategies with either
w(t) � c(t) or wðtÞ � c�ðtÞ, may employ a mixed two-part tariff strategy. With such a strategy, the
wholesale price could be selected randomly at constant levels around the production cost c�ðtÞ
over some fixed intervals of time. In such a case, w(t) is announced as a deterministic function of
time, ŵðtÞ, rather than of the learning dynamics or of the optimal production cost and the
retailer’s optimality condition is reduced to

qðŵþm; tÞ þ ðm� crgÞ
@qðŵþm; tÞ

@p
¼ 0:

As long as wholesale prices ŵðtÞ are not affected by the demand experience, the closer the price
ŵðtÞ to c�ðtÞ, the more coordinated the supply chain will be. Further, the risk of viewing this
strategy as a pure dynamic two-part tariff will also be reduced.
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6. Conclusions

In this paper we develop a differential game to model continuous-time dynamic interactions
between a supplier and a retailer who faces a general, endogenous in product price and exogenous
in time demand. The dynamic is due to the exponential learning by doing in mature technologies.
With such an approach we address the problem of vertical competition in a supply chain with
experience accumulating and impacting production costs over time. We have shown that a myopic
attitude based on static models of supply chains leads to overpricing. This observation justified
therefore the intertemporal approach used in this paper and needed to account properly for the
economy of scale effects. For comparative purposes, we have studied both a centralized (or
vertically integrated) and a non-cooperating supply chain. In contrast to the centralized system,
where the retail price barely matters, we note in our analysis that competition induces not only
higher pricing, but also a synchronized rate of change in the wholesale price and the retailer’s
margin. Furthermore, if the long-term dynamic effects of production experience are disregarded,
the supply chain performance is shown to deteriorate even more than in the corresponding static
case with no learning (experience). Such deterioration in supply chain performance is due to the
retailer myopically ignoring not only the supplier’s margin from sales at each time point but also
the supplier’s profit margin from production cost reduction.
An essential result outlined in our analysis is that the pure two-part tariff strategy widely

employed in static supply chain approaches may only partially coordinate supply chains in a
dynamic setting. This effect is due to a cumulative ‘‘memory’’ or time experience imbedded in the
continuous time exchange between the retailer and the supplier. Although, time has a
coordinating effect on the supply chain as well, it becomes perfectly coordinated with the
dynamic two-part tariff only by the end of the production period. A pure time-variant strategy,
setting the wholesale price equal to the system-wide optimal production cost may still be
interpreted as dynamic and, as a result, become time-inconsistent on the other hand.
To compensate this time inconsistency, our analysis has suggested that the supplier may

employ a mixed two-part tariff strategy with the wholesale price selected randomly around the
production cost over some fixed intervals of time. In such a case, the wholesale price will be a
function of time, rather than learning. Accordingly, the closer the wholesale price to the
production cost, the more coordinated the supply chain will be. While the paper has emphasized
only the experience gained in production, other sources of system dynamics such as customer
and brand loyalty, word of mouth and risk aversion are cases for further study where additional
experience effects can be tracked to a supply chain performance. Studying these effects in their
time setting on supply chain performance is a challenging task, which presents possible directions
for future research.
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APPENDIX

Proof of Proposition 1: Comparing (14) and (12) we observe that

qðp�; tÞ þ ð p� � c� cgÞ @qðp
�; tÞ

@p
¼ qð pM; tÞ þ ð pM � cÞ @qð p

M ; tÞ
@p

¼ 0; ðA:1Þ

while taking into account that p4c, co0 for 04t4T, and @q
@p < 0,

qð pM ; tÞ þ ð pM � c� cgÞ @qð p
M; tÞ
@p

< qð pM; tÞ þ ð pM � cÞ @qð p
M ; tÞ
@p

¼ 0: ðA:2Þ

Next, by denoting f ð pÞ ¼ qð p; tÞ þ ð p� c� cgÞ @qð p; tÞ@p , and recalling (13), we conclude that
@f ð pÞ
@p < 0.
Thus, from conditions (A.1) and (A.2) we have f ð pMÞ < f ð p�Þ, which with respect to

the last inequality requires that pM > p� and, hence, qð pMÞ < qð p�Þ, as stated in
Proposition 1.&

Proof of Proposition 2: Differentiating (12), we have

@qð p�; tÞ
@t

þ @qð p
�; tÞ

@p
_p� þ ð p� � c� cgÞ

"
@2qð p�; tÞ

@p2
_p� þ @

2qð p�; tÞ
@p@t

#
þ _p�

@qð p�; tÞ
@p

and thus

_p�

"
2
@qð p�; tÞ

@p
þ ð p� � c� cgÞ @

2qð p�; tÞ
@p2

#
¼ � @qð p

�; tÞ
@t

� ð p� � c� cgÞ @
2qð p�; tÞ
@p@t

:

Recalling the assumption and (13) we readily observe that _p� > 0 if @qð p�; tÞ
@t > 0, otherwise,

_p�)0.&

Proof of Proposition 3: The first statement is due to the fact that cr 5 0. Comparing (12) and (17)
and taking into account that p5w1m, m40 and w4c, co0 for 04toT, and @q

@p < 0, we observe
that

qð p�Þ þ ðp� � wÞ @qð p
�Þ

@p
> qð p�Þ þ ð p� � c� cgÞ @qð p

�Þ
@p

¼ 0:
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This inequality holds even under the myopic attitude, c5 0, which implies that the
deterioration in the supply chain performance increases (the third statement of the
proposition), when it is affected by the economy of scale. Since the second derivative of
both sides of the inequality is negative, the remaining part of the proof is similar to that
for Proposition 1.&

Proof of Proposition 4: To see that a solution of (20) exists and that it is unique, assume mn 5 0 at
a point t. Then, since P(t)4c(t)1cs(t)g and q(P)5 0, q(c12mn1csg, t)40, while the second term
in the second equation of (20) is zero.
Using notation of f(mn) for the left-hand side of the second equation of (20), we thus found that

f ðmnÞ ¼ qðcþmn þ csg; tÞ þmn @qðcþmnþcsg; tÞ
@p > 0, when mn 5 0. On the other hand, by letting

c12mn1csg5P and accounting for the fact that q(P, t)5 0, mn 5 (P� c�csg)/240 and that as
a result, the second term of the second equation of (20) is strictly negative, we observe that

f(mn)o0. Consequently, taking into account that
@f ðmnÞ
@mn < 0, we conclude that the solution of

f(mn)5 0 is unique and meets the following condition 0omno(P� c�csg)/2.
Finally, requiring mn

X�csg and (P� c�csg)/24�csg, i.e., min{P� c, Z}X�csg, we readily
verify that the first equation of (20), w5 c1m1csg, always has a unique feasible solution as
well.&

Proof of Proposition 5: Differentiating both equations of (20), we have _w ¼ _m,

@qð p; tÞ
@t

þ @qð p; tÞ
@p

2 _mþm
@2qð p; tÞ
@p2

2 _mþ @
2qð p; tÞ
@p@t

� �
þ _m

@qð p; tÞ
@p

¼ 0

and thus

_m

"
3
@qð p; tÞ
@p

þ 2m
@2qð p; tÞ
@p2

#
¼ � @qð p; tÞ

@t
�m

@2qð p; tÞ
@p@t

:

Taking into account (21) and _w ¼ _m, we observe monotonous evolution similar to that
obtained for centralized pricing, but with respect to the wholesale price and the retailer’s
margin.&
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