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From the definition ofQ(�), one can prove through lengthy but
simple calculations that

@Q

@x
(x; t)

2

1 +Q2(x; t)
� 16jQj2 + 16�2jQj2 + 8S(�0)

2 jxj2: (55)

We deduce that (39) holds with" = 1=(128(jQj2 + �2jQj2 +
S(�0)

2)).
2) Now, we prove (40), which is satisfied if, for a given new constant

c � 0, there exist�0 and� such that

c��20 x>Q � (jxjQ)
2 D(t)>Qx

2

� jxj2 + ��0� (jxjQ) jxjQ D(t)>Qx
2

(56)

cjx>Q� (t)j�20
� (jxjQ)

2

jxj2Q
D(t)>Qx

2

� jxj2 + ��0� (jxjQ) jxjQ D(t)>Qx
2

: (57)

Using j�(�)j � 1, one can check readily that (56) holds if
c�0jx

>Qj � jxjQ. This inequality is satisfied if�0 is suffi-
ciently small.

Inequality (57) is satisfied if, with�0 chosen such that (57)
holds, there exists� � 0 such that

c�20S(�0)jxj
� (jxjQ)

2

jxj2Q
D(t)>Qx

2

� jxj2 + �0�� (jxjQ) jxjQ D(t)>Qx
2

: (58)

Using the triangular inequality, we deduce that this inequality is
satisfied if

c�30� (jxjQ)
3 D(t)>Qx

2

� �jxj5Q (59)

wherec > 0 is a constant independent of� and�0. SincejD(t)j
is smaller than a strictly positive constant for allt � 0, we de-
duce that one can choose a sufficiently large� such that (59) is
satisfied. 4
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Optimal Control of a Resource-Sharing Multiprocessor
With Periodic Maintenance

Konstantin Kogan, Sheldon Lou, and Avi Herbon

Abstract—Shared resources and the processes that control them
play a critical role in the functioning of concurrent systems. This note
analyzes the production control of a workstation producing a number
of products concurrently. The workstation is periodically stopped for
maintenance. The objective of the production control is to minimize
inventory and backlog costs over an infinite time horizon. Using the
maximum principle and under the so-called agreeable cost structure,
we derive the optimal production control. We prove that under this
cost structure, the problem can be solved in polynomial time.

I. INTRODUCTION

Sharing resources is common in industrial applications. Advances
in information technology have challenged Internet and database
suppliers with the problem of providing a high level of service in the
face of permanently growing demands. Specifically, the explosive
growth of the Internet and the World Wide Web has brought a dramatic
increase in the number of users that compete for the shared resources
of distributed system environments [10]. Similarly, efficient control
of shared resources is crucial for data base processing where online
memory is allocated to each microprocessor [11], [8], as well as for
designing a high-performance robot controller with multiple arithmetic
processing units (APUs) [1]. Besides these modern applications, the
classical problem of optimal scheduling of flexible-manufacturing
systems, which comprise a number of work-cells where production
resources are shared remains of significant practical importance [14].

As technology progresses, systems with shared resources become
more complex. In order to realize the full economic life cycle of these
systems, as well as to obtain maximum availability and reliability

Manuscript received January 4, 2000; revised October 9, 2001. Recom-
mended by Associate Editor X. Zhou.

K. Kogan is with the Department of Interdisciplinary Studies—Logistics,
Bar-Ilan University, Ramat-Gan 52900, Israel, and also with the Department
of Computer Sciences, Holon Academic Institute of Technology, Holon 59102,
Israel (e-mail: kogank@mail.biu.ac.il).

S. Lou is with the College of Business Administration, California
State University San Marcos, San Marcos, CA 92096-0001 USA (e-mail:
lou@csusm.edu).

A. Herbon is with the Department of Management and Industrial Engineering,
Ariel College, Ariel 44837, Israel.

Publisher Item Identifier 10.1109/TAC.2002.800747.

0018-9286/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 8, AUGUST 2002 1343

of such equipment, periodic maintenance is vital. The literature
presents several methodologies for incorporating maintenance and
system’s control policies in stochastic environments (e.g., [2]–[4])
or in deterministic environments (e.g., [7] and [12]). Deterministic
works typically proceed in two research directions. One is to suggest
an efficient analytical production and/or maintenance policy. The
main disadvantage is that strong limitations are introduced into the
model in order to obtain a tractable solution. Among the limitations
is the a priori assumption that the maximum maintenance rate is
equal to a constant coefficient times the maximum production rate
[6], application for a group of i.i.d. machines (e.g., [15]) or referring
to only one product type [9]. The last work [9] studied a simple
production system consisting of single machine and producing one
part type. Demand rate was assumed to be constant and maintenance
was performed on a periodic basis. Pontryagin’s maximum principle
was used to solve analytically the special case of one up–down
cycle. Since analytic solutions are rarely available, the other direction
involves using dynamic programming and the maximum principle
for numerical approximation of the optimal control and preventive
maintenance over fixed time points (e.g., [5] and [12]).

This note follows the analytical avenue in providing an optimal so-
lution. To the best of our knowledge, besides the aforementioned work
[9], there is no suggestion in the literature regarding an analytical solu-
tion for optimal scheduling of concurrent processing under periodically
maintained shared resources. We extend the work of [9] by focusing on
a deterministic production system consisting of one workstation, which
produces a number of product-types (multiprocessor with shared re-
source). The workstation is periodically stopped for maintenance.

II. STATEMENT OF THE PROBLEM

Consider a workstation producingN product-types to satisfy
demand ratedn; n = 1; 2; . . . ; N . The workstation is periodically
stopped for maintenance. Definets the time at which the production
period starts,tf the end of the maintenance period,P the production
duration, andM the maintenance duration. We then have

tf = ts + P +M: (1)

Assuming the system has reached the steady-state, then the cyclic be-
havior of the system can be described by the following differential
equations:

_Xn(t) =A(t)un(t)� dn

Xn(ts) =Xn(tf); n = 1; 2; . . . ; N (2)

whereXn(t) is the surplus of productn at timet, if Xn(t) � 0, and
the backlog, ifXn(t) < 0. un(t) is the production rate andA(t) is a
periodic maintenance function defined as

A(t) =
1; if ts � t < ts + P ;
0; if ts + P � t < ts + P +M .

(3)

The production rate is a control variable, which is bounded by the max-
imum production rateUn for productn

0 � un(t) � Un: (4)

Since the workstation can produce a number of products concurrently,
the following constraint ensures the production not exceed the capacity:

n

un(t)

Un
� 1: (5)

In order to assure that the demand can be fulfilled at each production
cycle, we also need that

n

dn
Un

�
P

P +M
: (6)

The objective is to find an optimal cyclic behavior (un(t); Xn(t)) of
the workstation that satisfies constraints (2), (4), and (5) while mini-
mizing the following piecewise linear cost functional:

J =
t

t n

c+nX
+

n (t) + c�nX
�

n (t) dt (7)

where

X+

n (t) = maxfXn(t); 0g X�n (t) = maxf�Xn(t); 0g (8)

c+n and c�n are the unit costs of storage (inventory) and backlog of
product-typen, respectively.

In this note, we assume relatively large backlog costs are assigned
to products that cause large inventory costs and vice versa, formalized
as follows.

Assumption 1:The inventory and backlog costs are agreeable, that
is, if c+nUn > c+

n
Un , then c�nUn > c�

n
Un and vice versa, for

n; n0 2 
, where
 = f1; . . . ; Ng.
Without loosing generality, we also assume that ifc+nUn > c+

n
Un

thenn > n0, and ifn 6= n0 thenc+nUn 6= c+
n
Un , n; n0 2 
, where


 = f1; . . . ; Ng.

III. D UAL FORMULATION

The maximum principle [12] is used in this section to construct a dual
problem. The Hamiltonian is the objective function of the dual problem
and is maximized at every point of time by the optimal controlsun(t).

Applying the maximum principle to problem (2)–(7), the Hamil-
tonian, denotedH , is formulated as follows:

H = �
n

c+nX
+

n (t) + c�nX
�

n (t) +
n

 n(t)(un(t)�dn): (9)

The co-state variables, n(t), (see [12]) satisfy the following dual dif-
ferential equation with corresponding periodicity (boundary) condi-
tion:

_ n(t) =

c+n ; if Xn(t) > 0

�c�n ; if Xn(t) < 0

a; a 2 [�c�n ; c
+
n ]; if Xn(t) = 0

 n(ts) = n(tf): (10)

To determine the optimal production rateun(t) whenA(t) 6= 0, we
consider the following four possible regimes, which are defined ac-
cording toUn n(t).

1) Full Production (FP) Regime :This regime appears if there is
ann such thatUn n(t) > 0, andUn n(t) > Un  n (t); 8n0 6=
n; n; n0 2 
. In this regime, according to (9), to maximize the Hamil-
tonian we should haveun(t) = Un andun (t) = 0,8n0 6= n; n; n0 2

.

2) No Production (NP) Regime:If Un n(t) < 0, 8n 2 
. In
this regime to maximize the Hamiltonian, we should haveun(t) = 0,
8n 2 
.

3) Singular Production (S-SP) Regime:This regime appears
if there is anS � 
, the rank of S [the rank of S is de-
fined as the number of units inS and denotedR(S)] is greater
than 1, andUn n(t) = Un  n (t) > 0; 8n; n0 2 S, and
Un n(t) > Um m(t); 8n 2 S; m =2 S. In this regime there is a
set of productsS (the active set) for which the Hamiltonian gradients
Un n(t) > 0 are equal to each other and are greater than all the other
gradients at an interval of time.

4) Singular Production (Z-SP) Regime:This regime appears if
there is aZ � 
 such thatUn n(t) = Un  n (t) = 0; 8n; n0 2 Z,
andUn n(t) > Um m(t); 8n 2 Z; m =2 Z. In this regime there is
a set of productsZ (the active set) for which the Hamiltonian gradients
Un n(t) = 0 and are greater than all the other gradients in an interval
of time.
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IV. PROPERTIES OF THEOPTIMAL SOLUTION

The optimal production rates under the singular production regimes
are discussed in the following three lemmas.

Lemma 1: If there is ann 2 
 such thatUn n(t) > 0, then

1)
m2


(um(t)=Um) = 1;
2) if un(t) > 0 thenUn n(t) � Un  n (t) for all n; n0 2 
.

Proof: Since the optimal control maximizes the Hamiltonian (9),
the first part of the lemma must hold otherwise we could increaseun(t)
to enlarge the Hamiltonian. To prove the second part of the lemma, as-
sume there is ann0 such thatUn n(t) < Un  n (t). Also assume the
portion of production capacity allocated to partn is un(t)=Un = �.
Then�Un n(t) < �Un  n (t) and if the same capacity were allo-
cated to partn0 instead ofn, HamiltonianH could be increased. How-
ever, this violates the optimality assumption.

Lemma 2: Let theS-SP regime with its active setS be in a time
interval� . Then, the following hold fort 2 � :

1) Xn (t) 6= 0 and

un (t) = Un 1�
dn
Un

for n� = minn2S n;
2) un(t) = dn; Xn(t) = 0 for all n 6= n�; n 2 S;
3) un(t) = 0 for all n =2 S.

Proof: According to the definition of theS-SP regime

Un n(t) =Un  n (t) > 0; t 2 � for all n; n0 2 S; (12)

and

Un n(t) >Ul l(t); t 2 � for all n 2 S; l =2 S: (13)

By differentiating (12), we obtain

Un _ n(t) = Un _ n (t); t 2 �: (14)

Considering Assumption 1 and the definition of_ n(t) shown in (10),
(14) can be met in only the following two cases:

Case 1)Xn(t) = 0 for all n 2 S;
Case 2)Xn (t) 6= 0, andXn(t) = 0 for all n 6= n�, n 2 S with

n� = minn2S n and

un (t) = Un 1�
dn
Un

: (16)

If Xn(t) = 0 in a time interval for somen 2 S, then differentiating
Xn(t) = 0 and using (2), we obtain

un(t) = dn: (17)

However, from (6), we have

1�
n2


dn
Un

� 0; thus
un (t)

Un
= 1�

dn
Un

�
dn
Un

:

In Case 1),un�(t) = dn�. Thus, the previous inequality implies that
the Hamiltonian in Case 2) will be larger than the Hamiltonian in Case
1) and, therefore, Case 2) provides the optimal control. The maximiza-
tion of the Hamiltonian also demands thatun(t) = 0 for all n =2 S.
From (17) we haveun(t) = dn, for all n 6= n�, n 2 S.

Lemma 3: Let theZ-SP regime with its active setZ be in a time
interval� . Thenun(t) = dn,Xn(t) = 0 for all n 2 Z andun(t) = 0
for all n =2 Z, t 2 � .

Proof: Consider theZ-SP regime which by definition satisfies

 n(t) = 0; t 2 � for all n 2 Z; (18)

and

 n(t) < 0; t 2 � for all n =2 Z:

First, if n(t) < 0 to maximize the Hamiltonian we must haveun(t) =
0. Next, by differentiating (18), we obtain

_ n(t) = _ n (t) = 0; t 2 � for all n; n0 2 Z: (19)

Using the same argument as in Lemma 2, we have

Xn(t) = 0; un(t) = dn; t 2 � for all n 2 Z: (20)

The next lemma shows that there must be aZ-SP regime with its
active setZ = 
 in some time interval� .

Lemma 4: Let
n
(dn=Un) < P=(P +M), then during the pro-

duction periodP there must be aZ-SP regime with its active setZ = 

in some time interval� .

Proof: We first notice that under theS-SP,Z-SP, and FP regimes

n
(un(t)=Un) = 1. Also, based on the assumption of this lemma,

we have
n
(dn=Un)(P+M) < P . Therefore, during the production

durationP , if we only use theS-SP,Z-SP, and FP regimes, we would
have

n
(dn=Un)(P +M) <

n
(un(t)=Un)P , which implies the

production would exceed demand. This violates our cyclic production
assumption. Therefore, there must be a time periodP1 � P, during
which

n
(un(t)=Un) < 1, and the only possible regimes duringP1

areZ-SP and NP. IfZ 6= 
, eitherZ-SP or NP will result in some
product(s) being not produced. That is, there exists somen such that
un(t) = 0, t 2 P1. We now argue that this cannot be the optimal
solution.

For suchn thatun(t) = 0, t 2 P1, we must have n(t) < 0 under
Z-SP or NP regimes. IfXn(t) < 0, then _ n(t) < 0 and, thus, product
n will not be produced again. This contradicts the cyclic production
assumption. IfXn(t) > 0, then we can certainly reduce the overall
cost by doing the following. We first reduce the production in the period
beforeP1 so thatXn(t1)0, wheret1 is the starting time ofP1. We then
letun(t) = dn, t 2 P1 maintainXn(t) = 0, t 2 P1. Both will reduce
the inventory cost. Thus, we must haveun(t) 6= 0, all n 2 
, t 2 P1.
Therefore, the only possible regime isZ-SP withZ = 
.

In the following, we will establish the optimal production sequence,
starting fromZ-SP regime withZ = 
. First, Lemma 5 shows that the
regime following the aforementionedZ-SP regime must be anS-SP
regime withS = 
.

Lemma 5: Let �1 and�2 be two consecutive time intervals,�2 fol-
lowing �1. If theZ-SP regime is in�1, thenun(t) > 0 for all n 2 Z,
t 2 �2. Further, ifZ = 
, then there is anS-SP regime in�2 with
S = 
.

Proof: According to Lemma 3,Xn(t) = 0 and n(t) = 0 for
n 2 Z, t 2 �1. If un(t)0, t 2 �2, then from (2) and (10), we have
Xn(t) < 0, _ n(t) < 0, and n(t) < 0, t 2 �2. Therefore, n(t) <
0 for t > t1, wheret1 is the starting time of�2 and productn will
never be produced again. This contradicts the assumption of the cyclic
production requirement. IfZ = 
, thenun(t) > 0 for all n 2 
,
t 2 �2. This can only happen ifS-SP regime is in�2 with S = 
.

We now state the relationship between two consecutiveS-SP
regimes.

Lemma 6: Let twoS-SP regimes with their active setsS1 andS2 be
in two consecutive time intervals�1 and�2, �2 following �1 andm =
minn2S n. If Xm(t) > 0, t 2 �1 andm > n0; 8n0 2 
; n0 =2 S1,
thenS1 = S2 +m.

Proof: If n 2 S1, n > m, then according to Lemma 2 we have
Xn(t) = 0, Un n(t) = Um m(t), t 2 �1. If un(t) = 0, t 2
�2, thenXn(t) < 0, t 2 �2. Further, sincen > m, if Xn(t) <
0, Un _ n(t) < Um _ m(t) (see (10) and Assumption 1). Therefore,
Un n(t) < Um m(t) for all t > t1, wheret1 is the starting time
of �2. This ensuresun(t) = 0 for all t > t1 which contradicts the
cyclic production requirement. Therefore,un(t) > 0, t 2 �2. Thus,
n 2 S2.

We next show ifn =2 S1 thenn =2 S2. We first observe that by defini-
tion of anS-SP regime,Un n(t) > Un  n (t); 8n 2 S1; n

0 =2 S1,
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t 2 �1. Sincen > n0 for 8n 2 S1; n
0 =2 S1 andXm(t) > 0, t 2 �1

(assumptions of this lemma), we haveUn _ n(t) > 0, Un _ n(t) >
Un _ n (t), 8n 2 S1; n

0 =2 S1 [see (10)]. Therefore,Un n(t) >
Un  n (t); 8n 2 S1; n

0 =2 S1, t = t1, wheret1, as previously de-
fined, is the starting time of�2. Therefore,n0 =2 S2. SinceS1 6= S2,
we must haveS1 = S2 +m.

The aforementioned lemmas show that there must be aZ-SP regime
withZ = 
 (Lemma 4) followed immediately by anS-SP withS = 

(Lemma 5). The possible regimes afterwards areS-SP regimes defined
in Lemma 6. We now show that an FP regime must be the last regime
before the maintenance period.

Lemma 7: Let �1 and�2 be two consecutive time intervals,�2 fol-
lowing �1. Further,S-SP regime with its active setS is in �1. Then, FP
regime is in�2 if and only ifR(S) = 2. (Recall thatR(S) denotes the
number of units inS).

Proof: If R(S) > 2 there would existn1 2 S andn2 2 S such
thatn1 > m andn2 > m, wherem = minn2S n. If FP is in�2 then
eitherun (t) = 0 or un (t) = 0, t 2 �2. However, this contradicts
the arguments established in the first part of Lemma 6.

If R(S) = 2, there exists ann 2 S, n > m. According to the
argument in Lemma 6, the only possible regime int 2 �2 is an FP
regime.

It is easy to show that only the maintenance period can stop an
FP regime. The previous lemmas established the optimal sequence of
regimes between theZ-SP withZ = 
 and the maintenance period. It
is summarized in the following lemma.

Lemma 8: The optimal production regimes from theZ-SP regime to
the maintenance period are the following:Z-SP! S-SP1! S-SP2!
� � �S-SPN�1 ! FP! Maintenance, whereS-SPk is anS-SP regime
with its active set beingSk = fk; k + 1; . . . ; Ng.

A similar lemma will show that the optimal production regimes after
the maintenance period is the reverse of the sequence in Lemma 8 due
to the agreeable cost coefficients (see Assumption 1). Maintenance!
FP! S-SPN�1 � � � ! S-SP2 ! S-SP1 ! Z-SP.

Having determined the optimal control regime sequence, our next
step is to determinetn, the time instances at which the regimes change
afterZ-SP regime, but before the maintenance, andt0n, that after the
maintenance as shown in Fig. 1.

We further denote maintenance interval[tM1 ; t
M

2 ], and time instance
t�n at which inventory levels cross zero line,n = 1; 2; . . . ; N . By
integrating (2), we immediately find

1�

N�1

i=n+1

di
Ui

Un(tn+1 � tn)� dn(t
�

n � tn) = 0

n = 1; . . . ; N; tN+1 = tM1 (21)

1�

N�1

i=n+1

di
Ui

Un(t
0

n � t0n+1)� dn(t
0

n � t�n) = 0

n = 1; . . . ; N; t0N+1 = tM2 : (22)

Integrating (10), we will obtain another set ofN equations

n�1

i=1

c+i Ui(ti+1 � ti) + c+nUn(t
�

n � tn)

=

n�1

i=1

c�i Ui(t
0

i � t0i+1) + c�nUn(t
0

n � t�n);

n = 1; . . . ; N: (23)

tN+1 = tM1 ; t
0

N+1 = tM2 :

The aforementioned3N equations can then be used to determine the
3N unknowntn, t0n, andt�n.

Fig. 1. Optimal behavior of the state and co-state variables forN = 3.

V. SCHEDULING ALGORITHM

Step 1) Sort products according toc+nUn in ascending order.
Step 2) Find3N switching pointstn; t0n; t

�
n, n = 1; . . . ; N by

solving3N equations (21)–(23).
Step 3) Determine the optimal production rates in each regime

according to Lemmas 2 and 3.
Note that the aformentioned algorithm the production is organized ac-
cording to the weighted lowest production rate (WLPR) rule, where
the maximum production rate is weighted by the inventory or backlog
costs. In contrast to most WLPR rules, which only allow one product
with the lowest production rate to be produced at a time, this algorithm
may assign a number of products to be produced concurrently. Since
the production rate is inversely proportional to the production time,
the concurrent WLPR rule is consistent with the weighted longest pro-
cessing time (WLPT) rule well known in scheduling literature [13].

The complexity of the algorithm is determined by Step 2), which
requiresO(N3) time to solve.

VI. CONCLUSION

The optimal production control of a workstation with
N -product-type and periodic maintenance is studied. The model
portrays the behavior of many systems, such as telecommunications
and computer complexes, which have multiprocessor ability to share
resources. The objective is to minimize inventory and backlog costs.
With the aid of the maximum principle, properties of the optimal
regimes and conditions for solving the problem polynomially are de-
rived. As a result, an efficient algorithm is constructed for solving the
problem inO(N3) time if inventory and backlog costs are agreeable.
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Controller Synthesis for Sign-Invariant Impulse Response

S. Darbha and S. P. Bhattacharyya

Abstract—In this note, we consider the problem of designing con-
trollers for discrete-time linear time-invariant (LTI) plants that render
the closed-loop impulse response nonnegative. Such systems have a
nonundershooting and nonovershooting step response. We first show that
the impulse response of any discrete-time LTI system changes sign at least
“ ” times if it has “ ” real, positive zeros outside a circular disk centered
at the origin and containing all its poles. We then show that a necessary
and sufficient condition on the plant for the existence of a compensator
that makes the closed loop impulse response sign invariant is that there
be no real, positive, nonminimum phase plant zeros. Finally, we show, by
construction, how such a compensator may be synthesized when the plant
does satisfy the existence condition.

Index Terms—Impulse response, nonminimum phase systems, nonnega-
tive impulse response, parity interlacing, step response.

I. INTRODUCTION

In this note, we consider the problem of designing controllers
for discrete-time linear time-invariant (LTI) systems that achieve a
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nonnegative closed loop impulse response. We will refer to such
systems having sign invariant impulse response as sign invariant
systems; the corresponding transfer functions will be referred to as
sign invariant transfer functions. Sign invariant systems have two
features of practical interest.

1) The step response will neither undershoot nor overshoot. This
feature is useful, for example, in designing control systems
to fill a tank without spilling [10], or to design pick and
place robots from one edge of the room to another [3].

2) The dc gain will equal its inducedl1 gain and hence, equal any
of its inducedlp gains. This feature is useful in applications
such as automatic vehicle following [11], where the induced
l1 gain must be minimized subject to an equality constraint
on the dc gain.

A concise characterization of sign invariant systems does not exist
in the literature. Attempts to characterize the oscillatory nature of
the impulse and step response from the location of the poles and
zeros of its transfer function is documented in [2], [6], [7], [15], and
[17]. In [2] and [7], a class of sign invariant transfer functions is
constructed by building elementary sign invariant transfer functions
of first, second, and third order, and their products. In [17], there
are two results of significant interest: the first result states that
the impulse response of a continuous-time LTI system withr real
zeros to the right of all its poles will change sign at leastr times.
The second result states that if the impulse response changes sign
r times, then sufficiently higher order derivatives of the transfer
function will have exactlyr real, positive roots; furthermore, the
relationship between those roots and the time at which the impulse
response changes sign is explicitly characterized. While the first
result in [17] indicates that any stable system with real, nonminimum
phase zeros has an undershooting step response, the results in [8]
and [15] further classify the undershoot in a step response into
Type A or Type B based on the time of its first occurrence. In [6],
an upper bound on the number of sign changes of the impulse and
step response for continuous-time systems, based on the location
of poles and zeros of the transfer function, is provided.

In [10], two sufficient conditions are provided for obtaining a
nonovershooting step response of a continuous-time LTI system,
based on state space data. While a discrete-time LTI system is
sign invariant iff its Markov parameters are nonnegative, this is not
necessarily true in the case of continuous-time systems. In [1], it is
conjectured that the continuous-time LTI system described by the
minimal triplet,(A; B; C), is sign invariant iff the Markov parameters
of some modified triplet,(�I + A; B; C) are nonnegative for some
real�. A counterexample to this conjecture is any minimal realization
with 1+ �� cos(w0t) as its impulse response, where� is an arbitrarily
small positive number [13].

The synthesis of a nonovershooting step response via a two-param-
eter compensator is considered in [7] for continuous-time systems.
In [3], it is shown that a nonovershooting compensator exists for any
discrete-time time system. However, a nonundershooting compensator
may or may not exist.

In this note, we consider the following discrete-time control system,
as shown in Fig. 1. The problem considered here is to determine
Gc1; Gc2; Gf so that the closed loop is internally stable and the
impulse response from the commandr(k) to the outputy(k) is
nonnegative.

The organization of this note is as follows. In Section II, we present
two necessary conditions for a discrete-time system to be sign invariant.
These conditions are: 1) there should be no real, positive nonminimum
phase zeros outside a disk centered at the origin and containing all its
poles and 2) a positive, real pole of the system must have maximum
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