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Optimal Finite-Horizon Production Control in a
Defect-Prone Environment

Konstantin Kogan, Chang Shu, and James R. Perkins

Abstract—In this note, we consider a single-machine, single-part-type
production system, operating in a defect-prone environment. It is assumed
that there is a random yield proportion of nondefective parts, with known
probability distribution. Over each production cycle, it is assumed that
there is a single realization of the yield random variable. Furthermore, it is
assumed that the system is operated under a periodic-review policy. Thus,
the particular realization of the yield proportion cannot be determined
prior to the end of the production horizon. The optimal production con-
trol, that minimizes a linear combination of expected surplus and shortage
costs over the planning horizon is shown to be piecewise constant, and the
appropriate production levels and control break-points are determined as
functions of the yield rate distribution.

Index Terms—Cost minimization, defect-prone, finite-horizon, produc-
tion control, random yield.

I. INTRODUCTION

In this note, we provide analytical results for a basic manufacturing
system model where the effect of the yield uncertainty is introduced.
It is assumed that the probability distribution of the random yield rate
is known, but the inventory level is observable only intermittently. The
optimal production control, that minimizes a linear combination of ex-
pected surplus and shortage costs over the planning horizon, is shown
to be piecewise constant, and the appropriate production levels and con-
trol break-points are determined as functions of the yield rate distribu-
tion. It is interesting to note that, even for the one-machine, one-part-
type system, the consideration of random yield leads to a nonintuitive,
and nontrivial, optimal production control.

The incorporation of random yield into manufacturing system
models has been of interest since as early as 1958 (see [9]). Since
then, many authors have considered random yield problems in various
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forms. In 1995, Yano and Lee [13] provided a comprehensive review of
the existing literature. Based on the system modeling characteristics,
they arranged random yield lot-sizing problems into the following
categories: discrete-time models, which include single-stage models
(both single and multiple period), multiple stages in tandem, assembly
systems, and continuous-time models with constant demand rates or
random demand rates.

Subsequently, more generic models have been studied including ex-
tensions such as uncertain supply, backlogged demand, imperfect pro-
duction, and late-stage inspection. Yield variability due to random pro-
duction capacity is considered in [2] and in [8]. More recently, Gros-
feld-Nir and Gerchak [4] examined a model with multiple successive
production runs to meet orders. They focused on relatively small vol-
umes of custom-made items and analyzed the yield structure. Liu and
Yang [11] considered multiple defect types (reworkable and nonre-
workable defects) and determined the optimal lot size. Bollapragada
and Morton [1] used myopic heuristics for the random yield problem
and obtained promising results. Yao and Zheng [14] studied a two-
stage problem in which, in order to coordinate the inspection proce-
dures at the two stages, the optimal policy is characterized by a se-
quence of thresholds at stage 1 and by a priority structure at stage 2.
For an assembly system under random demand and production yield
loss, Gurnani et al. [5] circumvented the difficulty of solving the orig-
inal problem by modifying the exact cost function with an approximate
one and determined a bound on the difference. Grosfeld-Nir et al. [3]
included inspection costs as a key part of the problem in a general mul-
tiple production run model.

A related problem is the extension of the classical single-period
newsboy problem to incorporate yield variability. (See [10] for an
excellent survey of the newsboy problem and its extensions.) For
example, Henig and Gerchak [7] examine the single-period newsboy
problem with random yield. Sipper and Bulfin, Jr. [12] discuss the
implications of random yield on material resource planning.

A primary difference between the model considered in this note and
the newsboy problem is that the newsboy problem assigns costs, and
allows replenishment, at discrete points of time. However, our model
considers continuous production and assignment of costs, although the
exact inventory position is known only periodically. In effect, the tra-
ditional random yield lot-sizing problem is transformed into a contin-
uous-time optimal control problem.

Aconstructiveapproachwillbeusedtoanalyzetheproblemwiththeaid
of the maximum principle. The maximum principle is a set of optimality
conditions, the application of which results in a new objective function,
called the Hamiltonian, and a co-state differential equation (see, for ex-
ample, [6]). A solution (control function) will be constructed that is both
feasible and maximizes the Hamiltonian. This ensures optimality.

The remainder of the note is organized as follows. In Section II,
the single part-type problem is described, and the original stochastic
problem is transformed into an equivalent deterministic problem. Sec-
tion III details the dual formulation, deriving the co-state equation and
describing the form of the optimal control. Then, in Section IV, the
optimal control is determined analytically for the piecewise linear in-
stantaneous cost function.

II. SINGLE-PART-TYPE PROBLEM DESCRIPTION

Consider a single-machine, single-part-type production system, op-
erating in a defect-prone environment. Suppose the production rate of
the system, u(t), is bounded and controllable, i.e.,

0 � u(t) � U: (1)
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Also, assume that the material flow is approximated by a fluid, and
the demand rate � is constant over some fixed production horizon
[0; T ]. Then, the inventory process,X(t), may be described by the fol-
lowing dynamics:

_X(t) = ���u(t)�� X(0) = x0 (2)

where ��� is a random variable representing the yield proportion of non-
defective parts and is characterized by the continuous probability den-
sity function f(�). For each production horizon, there will be a single
realization of this yield random variable. Furthermore, assume that the
detection of any defects requires at least time T . Thus, the particular
realization of ��� which will hold on [0; T ] cannot be determined prior
to the end of the production horizon. Since no new information other
than f(�) will become available during the production horizon, the de-
termination of how much to produce and when to produce it must be
made under these uncertain conditions, before production commences.

The objective is to determine fu(t) : 0 � t � Tg, the rate of
production over the entire production horizon, in order to minimize the
resulting total expected cost

J(u) = E

T

0

g (X(t))dt ! min (3)

where g(�) is the instantaneous buffer-level inventory cost function. It
is assumed that g(�) is a nonnegative, continuous, piecewise differen-
tiable, strictly convex function, with g(0) = 0.

In order to derive an equivalent deterministic problem, we introduce
a new state variable, Y (t), which represents the cumulative production
at time t, i.e.,

_Y (t) = u(t); with Y (0) = 0: (4)

Integrating (2), and substituting the integral of (4) into the result, yields

X(t) = x0 � t�+ ���

t

0

u(� )d� = x0 � t�+ ���Y (t): (5)

Substituting (5) into (3) shows that (1)–(3) are equivalent to

J(u) =

T

0

1

0

g (x0 � t�+ �Y (t))f(�)d� dt! min (6)

subject to (1) and (4).

III. DUAL FORMULATION

Given (1), (4), and (6), we construct the Hamiltonian as follows:

H(u; t) = �

1

0

g (x0 � t�+ �Y (t))f(�)d�+  (t)u(t) (7)

where  (t) is the co-state variable. According to the maximum prin-
ciple (see, for example, [6]), the co-state variable is absolutely con-
tinuous and satisfies the co-state (dual) equation with transversality
(boundary) condition

_ (t) = �
@H(u; t)

@Y (t)

=

1

0

�f(�)
@g(s)

@s
s=x �t�+�Y (t)

d�

where  (T ) = 0: (8)

The Hamiltonian is the objective of the dual problem, and it should
be maximized at each point of time with respect to the admissible con-

trol set. Since only the second term of (7) explicitly depends on u(t),
the maximization implies that

u(t) =

U; if  (t) > 0 (i)
0; if  (t) < 0 (ii)

u 2 [0; U ]; if  (t) = 0 (iii)
: (9)

Given the function  (t), the co-state variable-based necessary
optimality conditions (9)(i) and (ii) describe the full-production and
no-production regions, respectively; that is, when the production rate
reaches its maximum and its minimum (in our case 0). However,
the optimal control is not necessarily “bang–bang” (we will see that,
in general, it is not), due to condition (9)(iii), which describes the
singular production region. In order to resolve the singular production
ambiguity of the optimal control, it is necessary to have additional
information on the shape of the instantaneous cost function g(�).
Therefore, in the remainder of this note, we will consider the linear,
absolute value cost function.

IV. PIECEWISE LINEAR INSTANTANEOUS COST

A. Properties of the Primal and Dual Formulations

Consider the piecewise linear instantaneous cost function

g (X(t)) = c+X+(t) + c�X�(t) (10)

where c+ and c� are the positive inventory surplus and shortage cost
coefficients, respectively, X+(t) = maxf0;X(t)g and X�(t) =
maxf0;�X(t)g.
Primal Formulation: Given g(X(t)) = c+X+(t)+ c�X�(t), the

objective function (6) may be written as

J(u) =

T

0

1

c+ (x0 � t�+ �Y (t))f(�)d�

�

�1

c� (x0 � t�+ �Y (t))f(�)d� dt: (11)

Lemma 4.1: Together, (1), (4), and (11) constitute a convex pro-
gram. Thus, there is only one optimal value for the objective function.

Proof: Denote the integrand in (11) as R(t), so that J(u) =
T

0
R(t)dt. Since constraints (1) and (4) are linear, the proof is com-

pleted by verifying that the objective (11) is convex with respect to
Y (t), i.e.,

@2R(t)

@Y (t)2
= (c+ + c�)f

t�� x0
Y (t)

(t�� x0)
2

Y 3(t)
� 0:

Dual Formulation: For the piecewise linear instantaneous cost
function (10), the co-state (8) becomes

_ (t) =

1

Z(t)

c+�f(�)d��

Z(t)

�1

c��f(�)d�; and  (T ) = 0 (12)

where Z(t) = (t� � x0)=Y (t). Throughout the remainder of this
note, we will use this normalized variable Z(t), which will be referred
to as the state index because it involves the state variable Y (t). As is
apparent from (12), the state index Z(t) will play a critical role in the
subsequent analysis. If Z(t) < 0, then there has been an inventory
surplus up until time t, i.e., X(s) > 0 for 0 � s � t. In this case,
the second interior integral in the objective function (11) vanishes for
0 � s � t. If Z(t) > 1, then there is an inventory shortage at time t,
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i.e.,X(t) < 0. However, we cannot immediately deduce that there has
been an inventory shortage up until time t.

Theorem 4.1: The optimality conditions (4), (9), and (12) are both
necessary and sufficient.

Proof: The conclusion is immediate from Lemma 4.1.
Given (12), we now can resolve the ambiguity of the singular pro-

duction condition (9)(iii).
Lemma 4.2: Consider some t1, t2 such that 0 � t1 < t2 � T .

Suppose that  (t) = 0 for t 2 � = (t1; t2). Then, there exists some
constant � 2 (0; 1), such that, for t 2 � , Z(t) = � and u(t) = �=�,
where

�

0

�f(�)d� =
c+

c+ + c�
E[���]: (13)

Proof: Differentiating  (t) = 0 on the interval � , and substi-
tuting (12) into the result yields

1

Z(t)

c+�f(�)d��

Z(t)

�1

c��f(�)d� = 0: (14)

Although (14) cannot be solved explicitly for an arbitrary function
f(�), it can be simplified. By dividing the first term of (14) into
1

�1
c+�f(�)d� �

Z(t)

�1
c+�f(�)d� and recombining the terms,

using the fact that 0 � � � 1, yields

Z(t)

0

�f(�)d� =
c+

c+ + c�
E[���]: (15)

The right-hand side of (15) is a constant. Thus,Z(t)must be a constant,
say �. In addition, since 1

0
�f(�)d� = E[���] > 0, it follows that

0 < � < 1. Furthermore, differentiatingZ(t) = (t��x0)=Y (t) = �
yields u(t) = �=� for t 2 � .

Example 4.1: Consider a reverse, truncated exponential distribution
on the interval [0,1], i.e.,

f(�) =
�e

e �1
; for 0 � � � 1

0; otherwise
:

For this yield probability density function, we have

�

0

�f(�)d� =
1

�(e� � 1)
1 + (��� 1)e�� :

Note that E[���] can then be obtained by setting � = 1. Thus, (13)
becomes

1

�(e� � 1)
1 + (��� 1)e��

=
c+

c+ + c�
1

�(e� � 1)
1 + (�� 1)e� :

Simplifying this, we obtain the transcendental equation

(1� ��)e�� =
c� + (1� �)e�c+

c+ + c�
:

Although the aforementioned equation cannot be solved analytically
for �, it may easily be solved numerically to any desired precision.

Example 4.2: Suppose � is uniformly distributed on the unit in-
terval [0,1]. Then, since E[���] = 1=2, (13) becomes

c+

2(c+ + c�)
=

�

0

�d� =
1

2
�2:

Solving for � yields � = c+=(c+ + c�).

This subsection provides the theoretic preparation for determining
the optimal control trajectory u�(t) for the production system given
by (1) and (2). However, to complete the solution, it is necessary to
consider two cases, defined as follows: If a manufacturing system has
sufficient available capacity to produce at rate �=�, then the system
will be referred to as nondeficient; if it does not have adequate capacity
to produce at rate �=�, then it will be referred to as deficient.

In the following section, we solve the problem for a nondeficient
system first. Then, based on the results in Section IV-B, we complete
the solution for a deficient system in Section IV-C.

B. Nondeficient Systems

1) Optimal Control for Nondeficient Systems: Suppose that there is
enough capacity to produce at the level suggested by Lemma 4.2, i.e.,
�=� � U . We consider two cases, depending on whether there is an ini-
tial inventory surplus or shortage. The optimal solution for these cases is
proved using a constructive two-step approach. First, we propose a so-
lution, which satisfies the necessary and sufficient optimality conditions
(9)(i)–(iii). Then, we verify whether this candidate solution is feasible.
If the proposed solution is feasible, then it is globally optimal.
Lemma 4.3: (Initial Inventory Surplus): Suppose x0 � 0 and

�=� � U . If x0=� � T , then it is optimal not to produce any product,
i.e., u(t) = 0 for 0 � t � T . If x0=� < T , then the optimal produc-
tion control is given by

u(t) =
0; for 0 � t < x

�
�
�
; for x

�
� t � T

:

Proof: The proof is contained in the Appendix.
Lemma 4.4: (Initial inventory shortage): Suppose x0 < 0 and

�=� � U . If�x0=(�U � �) � T , then it is optimal to produce at
the maximum rate over the entire horizon, i.e.,u(t) = U for0 � t � T .
If�x0=(�U ��) < T , then the optimal production control is given by

u(t) =
U; for 0 � t < �x

�U��

�
�
; for �x

�U��
� t � T

:

Proof: The proof is contained in the Appendix.

C. Deficient Systems

As discussed earlier, for systems that are not deficient, the feasibility
of a candidate solution, satisfying the optimality conditions (9)(i)–(iii),
can be verified explicitly. However, for deficient systems, the deter-
mination of a switching point, i.e., the point at which the piecewise
constant control changes from one value to another, requires solving a
nonlinear equation similar to (12). Thus, for deficient systems, it is not
possible to verify the feasibility of a candidate solution explicitly using
(9)(i)–(iii). However, as will be shown, it is possible to verify feasi-
bility by excluding all infeasible trajectories. Then, we will show that
the only remaining solution satisfies (9)(i)–(iii) and is therefore neces-
sarily feasible because the original problem always has a solution.
1) Optimal Control for Deficient Systems: We begin by proving the

following general property, which holds for all systems, whether or not
they are deficient.
Lemma 4.5: If, under an optimal production control, the machine

is idle over any measurable interval of time (t1; t2], where 0 � t1 <
t2 � T , then the machine must have been idle since the beginning of
the production horizon, i.e., u(t) = 0 for 0 � t � t2.

Proof: The proof is by contradiction. Suppose that the production
rate is initially either U or �=�, and the system becomes idle after
some time t1 > 0. In addition, assume the co-state variable satisfies
(12). Then, according to (9), (t) � 0 prior to time t1, and then (t) <
0 after t1.
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Differentiating (8) yields

� (t) = (c+ + c�)
t�� x0
Y 2(t)

u(t)�
�

Y (t)

�f
t�� x0
Y (t)

t�� x0
Y (t)

:

Since, from the beginning of the production horizon, u(t) is equal to
either U or �=�, it follows that Y (t) = tu(t) > 0 for t > 0. Thus,
� (t) is a measurable, bounded function, and _ (t) is a continuous func-
tion.

Since _ (t) is continuous, and (t) changes from nonnegative to neg-
ative at t1, this implies _ (t) < 0 starting from some point t0 � t1.
Thus, using (12), it follows that

1

Z(t)

c+�f(�)d��

Z(t)

0

c��f(�)d� < 0; for t0 � t � t1:

This is possible only ifZ(t) > 0 for t0 � t � t1. However, the system
is idle for t > t1, which implies Y (t) remains constant, i.e., Z(t) =
(t��x0)=Y (t) > 0 increases and, hence,  (t) < 0 decreases. Thus,
the transversality condition  (T ) = 0 from (12) will never be met.

Corollary 4.1: Under an optimal production control, once the
machine commences production, it will continue to produce material
throughout the remainder of the production horizon.

Proof: The proof is an immediate consequence of Lemma 4.5.
The following two lemmas study two possible cases of deficient sys-

tems (�=�) > U characterized by an initial inventory surplus, x0 � 0.
The first case is further referred to as completely deficient, � > U ,
while the other as fairly deficient, � � U < �=�.

The optimality of the no-production control for a sufficiently large
initial inventory surplus, i.e., if x0=� � T , was proven in Lemma 4.3
without assuming any relationship between U and �. Therefore, this
result continues to hold for completely deficient and fairly deficient
systems. Next, we consider the case of a completely deficient system
with x0=� < T .

Lemma 4.6: Consider a system with 0 � x0=� < T and � > U .
Let

t2 =
c+E[���] x

U
+ c�E[���]T � (c+ + c�)B �; �

U

x

U

c+E[���]�
U
+ c�E[���] � (c+ + c�)B �; �

U

�
U

(16)

where

B �;
�

U
=

1

0

1� �
�
U
� �

�f(�)d�:

If t2 < T , solve for t1 from

t2�� x0
U(t2 � t1)

= 1: (17)

Otherwise, for t2 � T , solve for t1 from

c+E[���](T � t1)� (c+ + c�)

T

0

�f(�)d�dt = 0: (18)

For either case (17) or (18), let t̂1 = max(t1; 0). Then, the optimal
production control is

u(t) =
0; for 0 � t < t̂1
U; for t̂1 � t � T

:

Proof: The proof is contained in the Appendix.

Lemma 4.7: Consider a system with 0 � x0=� < T and �U <
� � U . Define time t1 to satisfy

c+E[���](T � t1)� (c+ + c�)

T

0

�f(�)d�dt = 0:

If t1 > 0, then the optimal production control is given by

u(t) =
0; for 0 � t � t1
U; for t1 < t � T:

Otherwise, for t1 � 0, the full-production control is optimal, i.e.,
u(t) = U for 0 � t � T .

Proof: If t1 � 0, the argument is same as was used as in the
previous lemma. Thus, suppose t1 > 0. Under the proposed control
u(t), Z(t) is nondecreasing. In addition

Z(t) = �1; for 0 � t � t1

�1 < Z(t) � 0; for t1 < t � x

�

0 < Z(t) � 1 for x

�
< t � T

: (9)

Note that Z(T ) � 1, since (x0 � t1�) + (U � �)(T � t1) � 0.
This is the same as the second subcase of the general sequence, which
was considered in the previous lemma. Thus, the optimal control will
be the same as was obtained there.

Next, consider a deficient system having an initial backlog. The op-
timal production control in this case does not depend on whether the
system is fairly or completely deficient.
Lemma 4.8: Suppose x0 < 0 and �=� > U . Then, the optimal

control is u(t) = U for 0 � t � T .
Proof: Since �=� > U , the singular production control de-

scribed by (9)(iii) is infeasible. According to Corollary 4.1, machine
idleness cannot follow production at full rate. We will show that, for
x0 < 0 and �=� > U , an optimal trajectory will never begin with
no-production. Therefore, there is only one possible regime left for an
optimal trajectory, which is production at full rate.

The remainder of the proof is by contradiction. We assume that the
system is idle for 0 � t � t1 and the co-state variable has a feasible
behavior satisfying (12). Then, Y (t) = 0, Z(t) = (t��x0)=Y (t) =
1, 0 � t � t1 and according to (9),  (t) < 0, 0 � t � t1. Conse-
quently, (12) becomes

_ (t) = �

Z(t)

�1

c��f(�)d� = �

1

0

c��f(�)d� = �c�E[���]:

Thus,  (t) < 0 and _ (t) < 0, which according to (9) means no
production, i.e., Y (t) = 0 and  (t) will only decrease until the end
of the production horizon. Thus, the transversality condition from (12)
will never be satisfied.

APPENDIX I

Proof of Lemma 4.3

The case in which x0=� � T is trivial, since, regardless of the
control implemented, there is no possibility of an inventory shortage.
Thus, it is optimal not to produce any product.

Next, suppose that x0=� < T . The candidate solution is

u(t) =
0; for 0 � t < x

�
�
�
; for x

�
� t � T

:

Since Y (t) = t

0
u(� )d� , this implies that

Y (t) =
0; for0 � t < x

�
�
�

t� x

�
; forx

�
� t � T

:
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Substituting this proposed solution into the state index Z(t) = (t��
x0)=Y (t), and using L’Hôpital’s rule at t = x0=�, it follows that

Z(t) = �1; for 0 � t < x

�

0 < Z(t) = � < 1; for x

�
� t � T

:

Consequently, by integrating the co-state (12) and using Lemma 4.2,
we obtain

 (t) =

 (0) +
t

0

1

Z(t)
c+�f(�)d�d�

=  (0) + c+E[���]t; for 0 � t < x

�

0; for x

�
� t � T

:

Choosing  (0) = �(c+x0=�)E[���] yields

 (t) = �
c+x0
�

E[���] + c+E[���]t

= c+E[���] t�
x0
�

< 0; for 0 � t <
x0
�
:

This solution is feasible, and it also satisfies the optimality condition
(9) over the entire production horizon. Thus, according to Lemma 4.1
and Theorem 4.1, it is globally optimal.

Proof of Lemma 4.4

Suppose�x0=(�U ��) � T first. Since 0 < � < 1, we can sepa-
rate this into two sub-cases: 0 � T � �x0=(U ��) and �x0=(U �
�) < T � �x0=(�U ��). For the case that 0 � T � �x0=(U �
�), the production horizon is not long enough to erase the inventory
shortage, regardless of the chosen rate of production. Thus, the full-pro-
duction control is optimal.

Consider the second subcase where �x0=(U � �) < T �

�x0=(�U ��). As in the previous subcase, Z(t) � 1 on the interval
0 � t � �x0=(U ��). Thus, from (12), it follows that

 (t)= (0)�

t

0

Z(t)

�1

c��f(�)d�d�= (0)� c�E[���]t (20)

on this interval. On the interval�x0=(U��) � t � �x0=(�U��),
also using u(t) = U , it follows that Z(t) = �=U � x0=Ut, which
is decreasing in t. Note that at times t = �x0=(U � �) and t =
�x0=(�U��),Z(�x0=(U��)) = 1 andZ(�x0=(�U��)) = �.
It follows that � � Z(t) � 1 on the interval �x0=(U ��) � t � T .
Therefore, on this interval, (12) may be rewritten as

_ (t) =

1

0

c+�f(�)d��

�

0

c+�f(�)d��

Z(t)

�

c+�f(�)d�

�

�

0

c��f(�)d��

Z(t)

�

c��f(�)d�:

Using (13)

_ (t) = �(c+ + c�)

Z(t)

�

�f(�)d�:

Integrating this equation, and using the terminal condition  (T ) = 0,
yields

 (t)=(c++c�)

T

t

Z(s)

�

�f(�)d�ds�0; for
�x0
U ��

�t�T: (21)

From the continuity of  (t) at the point�x0=(U ��), and using (20)
and (21), it follows that

 (0) = c�E[���]
�x0
U ��

+ (c+ + c�)

T Z(s)

�

�f(�)d�ds:

Since  (t) satisfies the transversality condition (12) and the optimality
conditions (9)(i)–(iii), the proposed control is optimal for this case.

Next suppose that �x0=(�U ��) < T . Then, the candidate solu-
tion given by the lemma is

u(t) =
U; for 0 � t � �x

�U��
�
�
; for �x

�U��
< t � T

which implies

Y (t) =
Ut; for 0 � t � �x

�U��
�
�

t� x

�
; for �x

�U��
< t � T

: (22)

Since 0 < � < 1 and �=� � U , (22) implies that

Z(t) = t��x
Ut

� � > 0; for 0 � t < �x

�U��

0 < Z(t) = t��x

(t� )
= � < 1; for �x

�U��
� t � T

:

Thus, _ (t) is given by

_ (t)

=

�c�E[���]; for 0 � t < �x

U��

�(c+ + c�)
Z(t)

�
�f(�)d�; for �x

U��
� t � �x

�U��

0; for �x

�U��
< t � T

:

Integrating this yields

 (t)=

 (0)� c�E[���]t; for0 � t < �x

U��

 �x

�U��
+ (c+ + c�)

�
T

t

Z(s)

�
�f(�)d�ds; for �x

U��
� t � �x

�U��

0; for �x
�U��

< t � T

:

Using the continuity of the co-state variable  (t) and the terminal con-
dition  (T ) = 0, it follows that

 (0) = c�E[���]
�x0
U ��

+ (c+ + c�)

Z(s)

�

�f(�)d�ds:

Since  (t) satisfies the transversality condition (12) and the opti-
mality conditions (9)(i)–(iii) over the entire production horizon, the
proposed control is optimal for this case.

Proof of Lemma 4.6

From Lemma 4.5 and Corollary 4.1, there are only three candidate
control regimes: Start off with no production and then from a point
t1 > 0 produce at full rate (general sequence); always produce at full
rate; or do not produce at all over the entire production horizon.

First, consider the general sequence having some known t1 > 0.
Thus

u(t) =
0 for 0 � t � t1
U for t1 < t � T

which implies

Y (t) =
0; for 0 � t � t1

U(t� t1); for t1 < t � T
: (23)
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Applying this control, it is not difficult to show that Z(t) is non-
decreasing over the entire production horizon. Define t2 such that
Z(t2) = 1. It follows that 0 � t1 < x0=� < t2, and

Z(t) = �1; for 0 � t � t1
�1 < Z(t) � 0; for t1 < t � x

�

0 < Z(t) � 1; for x

�
< t � t2

1 < Z(t); for t2 < t

: (24)

This results in two sub-cases: t2 < T and t2 � T . Consider t2 < T
first. Integrating the co-state (12), and using (24), yields

 (t1)=0

 (t)= (t1)+
t

t

1

Z(t)
c+�f(�)d�d�

= (t1)+c
+E[���](t�t1); for t1<t� x

�

 (t)= x

�
+

t 1

Z(t)
c+�f(�)d�

�
Z(t)

0
c��f(�)d� dt; for x

�
<t�t2

 (t)= (t2)�
t

t

Z(t)

�1

c��f(�)d�d�

= (t2)� c
�E[���](t�t2); for t2�t<T

 (T )=0:
(25)

Solving equation array (25), using the fact that  (t) is continuous over
time, it follows that

t 1

c+�f(�)d��

0

c��f(�)d� dt+

c+E[���]
x0
�
� t1 � c�E[���](T � t2) = 0: (26)

Since Z(t2) = 1, we also have

Z(t2) =
t2�� x0
Y (t2)

=
t2�� x0
U(t2 � t1)

= 1: (27)

Solving for t1 from (27), and plugging it into (26), we obtain the equa-
tion for t2, i.e.,

c+E[���]
t2�� x0

U
� c�E[���](T � t2)

= (c+ + c�)

t

0

�f(�)d�dt: (28)

Note that the order of integration can be interchanged on the right-
hand side of (28). After some algebraic manipulation, the implicit equa-
tion for t2 as stated in (16) is obtained. In addition, t1 is determined
using (17). This solution will be feasible if t1 > 0 and t2 < T . Also,

 (t) < 0; 0 � t � t1;  (t) > 0; t1 � t < T and  (T ) = 0

so that the optimality conditions (9)(i)–(iii) are satisfied.
However, if t2 � T , t2 vanishes and the co-state variable will be

nonzero in only two time intervals. Using a parallel argument as before,
we obtain

u(t) = 0; Y (t) = 0; for 0 � t � t1
u(t) = U; Y (t) = U(t� t1); for t1 < t � T

(29)

and

Z(t) = �1; for 0 � t � t1

�1 < Z(t) � 0; for t1 < t � x

�

0 < Z(t) � 1; for x

�
< t � T

: (30)

Using (29) and (30), integration of the co-state (12) yields

 (t1)=0

 (t)= (t1)+
t

t

1

Z(t)
c+�f(�)d�d�

= (t1)+c
+E[���](t�t1); for t1<t� x

�

 (t)= x

�
+

t 1

Z(t)
c+�f(�)d�

�
Z(t)

0
c��f(�)d� dt; for x

�
<t�T

 (T )=0

:

(31)
By rearranging equation array (31), (18), stated in the lemma, is ob-
tained.

This completes the proof for the general sequence. The other
two sequences are proved similarly. Specifically, if t1 � 0, the only
feasible solution left which satisfies optimality conditions (9) is
production at full rate as stated in the lemma (the second sequence).
The third sequence can never hold, because (x0=�) < T implies
that the inventory level will become negative prior to time T . Thus,
no production will not be optimal. This conclusion may also be
obtained by showing that  (t) cannot be negative during the entire
production horizon.
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