
Ann Oper Res (2011) 187:89–119
DOI 10.1007/s10479-010-0799-6

Optimal sequential inspection policies

Endre Boros · Noam Goldberg · Paul B. Kantor ·
Jonathan Word

Published online: 22 October 2010
© Springer Science+Business Media, LLC 2010

Abstract We consider the problem of combining a given set of diagnostic tests into an in-
spection system to classify items of interest (cases) with maximum accuracy such that the
cost of performing the tests does not exceed a given budget constraint. One motivating ap-
plication is sequencing diagnostic tests for container inspection, where the diagnostic tests
may correspond to radiation sensors, document checks, or imaging systems. We consider
mixtures of decision trees as inspection systems following the work of Boros et al. (Nav.
Res. Logist. 56:404–420, 2009). We establish some properties of efficient inspection sys-
tems and characterize the optimal classification of cases, based on some of their test scores.
The measure of performance is the fraction of all cases in a specific class of interest, which
are classified correctly. We propose a dynamic programming algorithm that constructs more

Funding by the Domestic Nuclear Detection Office (DNDO), of the Department of Homeland Security,
through NSF Grants # CBET-0735910 and by Department of Homeland Security Grant/Contract
#2008-DN-077-ARI003-0, the Science and Technology Directorate, Office of University Programs, by
the National Science Foundation #SES 0518543 3/3 and by Office of Naval Research
#DOD-DON-ONR-N00014-071-0150, # DOD-DON-ONR-N00014-07-1-0299 are all most gratefully
acknowledged. The authors would like to thank DIMACS, and members of the DyDAn DHS Center of
Excellence for stimulating discussions. We also thank Nir Halman and an anonymous referee for
suggestions to improve the presentation.

E. Boros · J. Word
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA

E. Boros
e-mail: boros@rutcor.rutgers.edu

J. Word
e-mail: jword@rutcor.rutgers.edu

N. Goldberg (�)
Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology,
Haifa 32000, Israel
e-mail: noamgold@tx.technion.ac.il

P.B. Kantor
SC&I, Rutgers University, Piscataway, NJ, USA
e-mail: paul.kantor@rutgers.edu

mailto:boros@rutcor.rutgers.edu
mailto:jword@rutcor.rutgers.edu
mailto:noamgold@tx.technion.ac.il
mailto:paul.kantor@rutgers.edu

90 Ann Oper Res (2011) 187:89–119

complex policies by iteratively prefixing devices to a subset of policies and thereby enu-
merating all of the efficient (i.e., undominated) inspection policies in the two dimensional
cost-detection space. Our inspection policies may sequence an arbitrary number of tests
and are not restricted in the branching factor. Our approach directly solves the bi-criterion
optimization problem of maximizing detection and minimizing cost, and thus supports sen-
sitivity analysis over a wide range of budget and detection requirements.

Keywords Dynamic programming · Sequential inspection · Bi-objective optimization ·
Port security

1 Introduction

Inspection systems are mixtures of decision trees whose nodes are diagnostic tests and
whose leaves represent an assignment to actions. Faced with the problem of identifying
a threat, we may inspect some items of interest, and seek a system whose output is the ac-
tion of raising an alarm, or performing an expensive thorough examination, for some of the
given items. We are thus interested in deciding which of the items should trigger an alarm.
It is presumed that each test deployed involves some operating cost. The item classification
decision and subsequent action may incur an additional cost that is associated with the rate
of false positives (also known as type I errors).

The operating characteristics of a test can be expressed by a Receiver Operating Charac-
teristic (ROC) curve (Fawcett 2006) and by the cost parameters. Together, these completely
characterize the test and the cost/benefit of its deployment. The ROC curve expresses the
inspection system’s detection rate as a function of the rate of false positives. Finally, the
cost-detection curve , which is a fundamental mathematical entity of interest in our analysis,
can be constructed by adding the operating cost to the cost of false positives of each point
on the ROC curve.

A motivating application is the detection of nuclear and other potentially harmful mate-
rial that could be smuggled into the country. At present, about 90% of all cargo arriving to
the U.S. by sea arrives in container shipments. Each and every container requires the trans-
mission of detailed information about its contents and origin before arriving at a seaport.
Only a fraction of the containers go through more detailed testing such as X-ray and γ -ray
scanning, and even fewer go through more detailed manual inspection (see Frittelli 2005 for
more details). In general one can not afford to open and manually inspect each and every
container coming into the country through ports or border crossings. Imperfect information
about the contents of every package, vehicle or container is given by tests for the presence of
nuclear material. The tests may include different types of radiation sensors as well as simple
document checks. Although both basic and applied research is underway for introducing
less expensive, less intrusive, and more effective technologies for scanning containers (see
for example Slaughter et al. 2007), the underlying assumption remains that perfect informa-
tion may not be available. In this paper, we seek to use the costly and imperfect information
given by the available tests as efficiently as possible.

In principle, the operating goal is to detect 100% of a particular hazardous material being
smuggled into the country. In practice, most sensors will not detect 100% of the radioactive
material: physical equipment may malfunction, personnel can be negligent and adversaries
may learn new ways to conceal nuclear material. Thus, policy makers face the difficult
task of designing and deploying the best possible (imperfect) security inspection systems.
The decision maker’s problem includes both deciding the budget for inspection, allocating

Ann Oper Res (2011) 187:89–119 91

the budget to specific inspection policies, and implementing policies as physical inspection
systems. The strategic decision of allocating the budget may entail the subjective estimation
of two important parameters that are difficult to estimate: the prior probability of a dangerous
item and the cost of failing to detect a dangerous item. Our approach offers an alternative
for avoiding the preliminary computation of these parameters. In particular, we would like
to determine the set of policies yielding the highest rate of detection for any possible cost
of failing to detect a dangerous item. Our approach is advantageous to strategic decision
makers who may use more information in choosing a particular budget. On the other hand,
the advantage to a tactical decision maker is clearly the ability to determine the details of a
multi-level inspection system with highest detection rate given a particular budget. The latter
decision maker may also determine how these details (e.g., sequences of tests) may vary in
response to small changes in budget allocation. To this end we propose an algorithm that
finds an entire efficient frontier of inspection policies in the two-dimensional cost-detection
space providing an optimal policy for each conceivable value of the budget.

Each inspection system can be represented as a tree as shown in Fig. 3. The number
of branches at each node determines the complexity of the tree, and is determined by the
maximum number of different possible actions that may follow the application of the corre-
sponding test. The problem of finding optimal inspection systems corresponding to binary
decision trees has been considered by Stroud and Saeger (2003), and Madigan et al. (2007).
Stroud and Saeger (2003) have shown that the total number TN of possible binary decision
trees using N tests is given by the recursive formula TN = 2 + N(TN−1)

2, where T0 = 2.
Even for binary decision trees the total number of trees becomes extremely large, so that,
for example, T4 = 1,079,779,602. For general decision trees with branching factor k (but
two terminal actions), the formula can be generalized, yielding:

T
(k)
N = 2 + N

(
T

(k)

N−1

)k

. (1)

The principal result of this paper is an efficient computation scheme that finds the optimal
decision tree mixtures for a range of budget values, while avoiding a complete enumeration
of all decision trees. Boros et al. (2009) consider optimal decision tree inspection systems
with an arbitrary branching factor, satisfying a budgetary constraint as well as other perfor-
mance constraints. They present a large scale linear programming formulation for computing
the optimal system. For N tests and a fixed branching factor k, the number of variables in
the LP formulation is O(N !), which remains exponentially large, yet is substantially smaller
than the number of decision trees. The LP approach is effective for problems of sequenc-
ing as many as 5 sensors (i.e., tests) for container inspection. Future technologies being
considered may require inspection systems to use a larger number of sensors. Moreover,
multi-channel sensors represent a large number of conceptually distinct tests, as the sensor
readings can be matched to any of several profiles of interest.

Finally, let us note that our methodology is applicable to a wide range of problems in-
cluding screening for explosives, screening travelers at borders for drugs, screening at public
events for weapons, and testing the public for diseases. Of particular interest in explaining
and estimating the value of some of the parameters of our model in the case of the aviation
industry is the work of Jacobson et al. (2005). In the next section we will describe some
of the background for our contribution and the required definitions, including precise def-
initions of inspection devices and policies. We proceed to characterize optimal inspection
policies, in Sect. 4, where we prove a monotonicity property of such policies. In Sect. 5 we
propose an optimization formulation and an efficient algorithm for the problem of construct-
ing optimal policies from a given diagnostic test and a set of available actions. In Sect. 6 we

92 Ann Oper Res (2011) 187:89–119

make use of this algorithm as a sub-procedure in a dynamic algorithm for enumerating all
efficient policies. We also suggest an upper bound on the number of efficient policies. Fi-
nally, we conclude after discussing our computational experiments (Sect. 8), comparing the
computational performance and detection performance of our algorithms with the previous
work of Boros et al. (2009).

2 Background: cases, tests, devices, actions and policies

2.1 Definitions

Let us first introduce our basic terminology and notation. We consider a set of cases, some of
which may require more careful inspection. In homeland security applications, cases may be
containers arriving at entry ports from foreign countries, trucks arriving at border crossings,
or foreign visitors lining up for immigration at airports, etc. Each case belongs to a certain
class and we assume that cases of a given class require a certain predefined terminal action.
In this study we assume that cases are divided into two classes, good or bad, good cases
should be released without further delays, while those suspected to be bad are subjected to
a thorough manual inspection.

In order to detect the class of a case, we make use of a set of tests (e.g., sensors), each of
which, when applied, provides (imperfect) indication of the class to which the case belongs.
The set of tests is denoted by T , their number by N = |T |, and c(t) denotes the cost of
applying test t ∈ T to a case.1 A test generates a label (also called a score or a reading),
which gives some indication about the likelihood that the case belongs to the class of bad
items.

Applications of tests are costly: inspecting an innocent good case ties up resources and
may delay trade, for example, while releasing a bad case may have serious consequences
later. Our main problem is to devise a plan using the imperfect and costly tests in order to
help us make decisions and execute actions so that the overall expenses are minimized. To
be able to formulate the problem, we first need to describe the information which pertains
to tests and actions in more detail.

We shall view a subtree with nodes corresponding to tests, more abstractly, as a device,
filtering an input stream of cases, each of which is assigned a label. Formally, we associate
to each test t ∈ T , the set L = L(t) of possible labels. For each label i ∈ L we denote by
bi ≥ 0 and gi ≥ 0 the probabilities of label i ∈ L given the class of a case is, respectively,
bad or good; these can be estimated by the fractions of, respectively, bad or good containers
that are expected to receive label i in the long run. Since every test must assign a label to
every case, we have

∑
i∈L

bi =
∑
i∈L

gi = 1. (2)

When there is any ambiguity, we will specify the test t ∈ T , and refer to these parameters as
L(t), bi(t) and gi(t), respectively.

Let us note that although a label could be an arbitrary description of a category, in practice
it will often be an integer score (for example the number of suspicious entries in a shipping

1In order to capture fixed costs associated with test, the unit cost c(t) may be the long run average cost,
including the amortization of fixed costs.

Ann Oper Res (2011) 187:89–119 93

Fig. 1 An example for an elementary test and its ROC

manifest), or a real number (such as in the case of single channel radiation sensors). Accord-
ingly the set L(t) could be either finite and/or infinite for some of the tests t ∈ T . Though
much of the mathematical analysis we apply does not depend on the finiteness of the label
sets, the resulting algorithms and specifically their termination does. Our approach for the
case of continuous labels is to discretize the labels having a continuous range into a finite
set of labels L. In what follows we assume that the set of labels is finite.

We will index labels in such a way that

b1

g1
≥ b2

g2
≥ · · · ≥ bL

gL

(3)

holds for all tests, where L = |L| is the number of labels. Given this sorting of the labels,
the sequence of cumulative probabilities, for each i ∈ L, can be represented as points in a
two dimensional graph:

(∑
j≤i

bj ,
∑
j≤i

gj

)
,

in order to describe the performance of a test. Adding the point (0,0), the piecewise linear
curve determined by these points is known as the ROC of the test. See Fig. 1 for a simple
example with three labels. Note that due to the ordering (3) and the equalities (2), the ROC
curve is concave, starting at (0,0) and ending at (1,1).

Let us note that typically the outcome of applying a particular test is a random variable.
We assume in this study that the randomness of the test results essentially originates from
differences in exogenous properties of cases, and only to a negligible extent from measure-
ment errors. Consequently, we assume that repeating the same test on the same case will
not result in a different labeling of the case. For example, if the test is “checking the ship-
ping manifest”, then we will find the same suspicious entries, no matter how many times
we run the test for the same container. Similarly, if a radiation detector is triggered by a
container, it will most likely be triggered on a second examination as well. That is to say,
several containers with exactly the same contraband may give different sensor readings be-
cause of variations in other (shielding) cargo, or debris left from a previous shipment. But

94 Ann Oper Res (2011) 187:89–119

Fig. 2 An example of a complex
system that fuses multiple tests.
The labels of each individual test
(as well as the labels of the
complex device) are numbered,
in increasing order, from left to
right

Fig. 3 An elementary test with L labels and a compound device using the test as the root

for a given container, these factors remain the same no matter how many times we repeat
the measurement.

Another important assumption in this study is the stochastic independence of the different
elementary tests. This is a less self-evident condition, but, in practice, most studies in this
area make this assumption (see for example Stroud and Saeger 2003; Madigan et al. 2007;
Ramirez-Marquez 2008). The technical meaning of this assumption is that if we apply two
tests: t and t ′ to all cases, then, for example, the fraction of good cases receiving label
i ∈ L(t) from test t , and label i ′ ∈ L(t ′) from test t ′ is gi(t)gi′(t ′). This “product rule” allows
us to estimate the result of applying a sequence of tests to the stream of cases, regardless of
the results of preceding tests. This assumption is important for achieving the computational
speedup that we report in this paper.

Generalizing the notion of elementary tests, we consider more complex systems that fuse
multiple tests, and together filter a stream of cases, assigning to each one a label. Figure 2
shows such a complex system, combining three elementary tests T = {a, b, c}, where a and
b each have three labels, while c has only two. The tree in the figure represents the process
in which we first apply test a, and, if test a labels the case by 3 then we apply test c, etc. The
resulting complex system has seven labels, and, for example, the device will label a case
with label 6, if test a results in label 3, and the following test c assigns it to label 1.

We are now ready to formally define such complex systems, which we shall call devices.
The result of applying a device to a set of cases, of which some are good and some are
bad is that some fraction of each will be assigned to each of the labels. The effect of using a
device, other than its cost, is completely described by a collection of fractions, corresponding
to posterior probabilities of the labels, and subsets of tests describing each label. (See e.g.,
Fig. 3.)

Definition 1 A device D is defined as a set of triplets

D = {(bi, gi, Ti) | i ∈ L}, (4)

Ann Oper Res (2011) 187:89–119 95

where L is the set of (output) labels of D, the sets Ti ⊆ T are the subsets of elementary tests
applied to cases that end up to be labeled by i, and bi ≥ 0 and gi ≥ 0 are the probabilities of
receiving label i ∈ L, given that a case is, respectively, bad or good.

When ambiguity could arise, we shall refer to these parameters of a device D explicitly
by L(D), bi(D), gi(D), and Ti(D) for all i ∈ L(D), and we let L(D) = |L(D)| in order to
denote the number of labels of the device D.

Furthermore, following our assumption of stochastic independence of elementary tests,
and by equation (2) every device must satisfy the following relations:

bi(D) =
∏

t∈Ti (D)

bi(t)(t), and gi(D) =
∏

t∈Ti (D)

gi(t)(t), for all i ∈ L(D),

and
∑

i∈L(D)

bi(D) =
∑

i∈L(D)

gi(D) = 1. (5)

Let us note that every label i ∈ L(D) corresponds to a path in the decision tree which cor-
responds to D, and hence to a unique label i(t) ∈ L(t) for each test t ∈ Ti(D) along this
path.

To complete the description of a device D we must add its expected (per unit) operating
cost, when applied to a given stream of cases. This can be expressed as

c(D) =
∑
i∈L

(πbi + (1 − π)gi)c(Ti), (6)

where π denotes the a priori probability that a case is bad, and c(S) = ∑
t∈S c(t) for a subset

of tests, S ⊆ T .
An inspection policy is a device together with assignment of actions to its labels. The

cases which are assigned to a label, will then be subjected to the corresponding action. In
this paper we concentrate on two terminal actions A = {R,I }. Action R (release) corre-
sponds to not doing any further checking. In the container inspection application, we release
a container when it is considered harmless. Action I (inspect), on the other hand, is ap-
propriate when we are “sufficiently” suspicious about the case, and execute a lengthy and
detailed manual inspection; at the end of which we assume that the class of a case is de-
termined with absolute certainty. To each terminal action α ∈ A we associate its cost C(α)

and its detection rate �(α). The cost2 is normalized to in order to express the expense of
executing the action per unit or case being inspected. The detection rate of I is assumed to
be 1, and thus the detection rate of a policy, in general, will equal the fraction of bad cases
that are assigned to the action I . We assume that action R has no cost, while we take the
cost of I as our unit of measurement. Thus

C(R) = 0, C(I) = 1,

�(R) = 0, �(I) = 1.
(7)

Since action I reveals all bad cases to which it is applied, no sensible policy can have a cost
higher than I . Otherwise we would always replace that policy with I , and achieve better

2In most applications this cost depends not only on the operating cost of performing the manual inspection,
but also an additional cost which results from false positives, i.e., the collateral damage imposed by inspection
of harmless cases.

96 Ann Oper Res (2011) 187:89–119

performance at a lower cost. Therefore, we may also assume 0 ≤ c(t) < 1 for all (useful)
tests t ∈ T .

Let us add that there could be more than these two terminal actions, and in some applica-
tions those may arise naturally. Our analysis and results generalize completely for the case
of more than two terminal actions. We actually use this fact to present our recursion-based
solution. Before that, however, let us formally define what is meant by an inspection policy:

Definition 2 A policy P is a pair P = (D,x), where D is a device and x : L(D) × A →
[0,1] is a weighted mapping of the device’s labels into the set of actions. More precisely, for
every label i ∈ L(D) and action α ∈ A the value x(i, α), with 0 ≤ x(i, α) ≤ 1, is the fraction
of cases labeled by i that is assigned to be processed by action α. This mapping must satisfy

∑
α∈A

x(i, α) = 1, for all i ∈ L(D). (8)

This definition allows for a choice of a random mixture of assignment into actions, such
as x(i, I) = γ and x(i,R) = 1 − γ for some label i ∈ L(D). For a budget that is insufficient
for applying I to all cases it may be optimal to choose such a random mixture of assignments
of labels to actions. For example for a trivial device D = {(1,1,∅)}, and A = {I,R}, the
assignment x(1, I) = x(1,R) = 1

2 achieves the highest possible detection rate for a budget
of B = 1

2 . In general, under a budget constraint the assignment to a mixture of actions may
only enhance the detection performance compared with a pure assignment, x(i, α) ∈ {0,1},
for all i ∈ L(D) and α ∈ A. Moreover, in real life applications the budget may simply not
be large enough to treat all cases with the action I ; for an elaborate discussion of these
arguments see Kantor and Boros (2010).

Having defined what we mean by a policy, we must also specify the cost and performance
of the policy. For a policy P we can compute a unit cost C(P), which is the expected cost
per case of applying policy P , and a the detection rate �(P) which is the expected fraction
of the bad cases that will be identified (that is, assigned to action I) by policy P . The impact
of this cost will depend on the fraction of cases that are good and that are assigned to action
I (i.e., to be inspected). With a action set A = {R,I } and parameters defined as in (7), we
can write the cost and detection of the policy as:

C(P) =
∑

i∈L(D)

πbi(D)[c(Ti(D)) + x(i, I)C(I)] + (1 − π)gi(D)[c(Ti(D)) + x(i, I)C(I)]

= c(D) +
∑

i∈L(D)

πbi(D)x(i, I) + (1 − π)gi(D)x(i, I), (9)

and

�(P) =
∑

i∈L(D)

bi(D)x(i, I)�(I) =
∑

i∈L(D)

bi(D)x(i, I). (10)

Next we note that, in fact, terminal actions can be viewed as special cases of policies,
where D is a device with one output label and an empty set of tests. Similarly, policies
may be viewed as (non-terminal) actions, in the sense that they specify precisely what to
do with each of the cases, although it may involve some testing, followed by a terminal
action. Thus, we will view Definition 2 as a recursive structure, where the set A may in-
volve some policies, as well as the terminal actions. Since we do not gain any additional
information by repeating a test, we impose some further restrictions on the action mapping

Ann Oper Res (2011) 187:89–119 97

Fig. 4 An example device and a corresponding policy

x of policy (D,x). Let us denote by T (P) the set of tests involved in policy P ; we define
T (I) = T (R) = ∅. We shall call a mapping x feasible in Definition 2 if it satisfies the further
condition:

x(i,p) = 0 whenever Ti(D) ∩ T (p)
= ∅, for all i ∈ L(D) and p ∈ A. (11)

Henceforth, we consider Definition 2 extended so that the set A of actions may contain a
finite set of (complex) policies as well as the terminal actions, and also require the corre-
sponding action mapping x to satisfy the conditions (11). See Fig. 4 for an example of a
general policy, composed of a top level device, and a set A involving both terminal actions
and other policies.

2.2 Policy mixing

In the above definition of a policy we allowed a mixed assignment of labels to actions. Al-
though we do not explicitly model our problem as a game, our decision-analytic approach
to inspection recognizes that in practice it may be difficult to reliably model the adversary’s
utility function as well as the potentially large set of strategies. Nevertheless, game theoretic
models of inspection that do not address the aspect of sequencing the tests have been sug-
gested earlier; see for example Maschler (1966), and a survey by Avenhaus et al. (1998), and
a recent model suggested in the context of port security by Bier and Haphuriwat (2010). Hy-
pothetically, within a game theoretic framework our mixed assignment into actions would
correspond to mixed strategies. Even if no information is available about the possible moves
of the adversary, the advantage of a mixed assignment into actions is also evident in the
decision-analytic optimization approach, where finding the optimal deterministic policy is
an integer programming problem, while finding a mixed policy is the continuous relaxation
of that problem. Thus, mixed policies may achieve a superior detection rate for each bud-
get value compared with deterministic (pure) policies. Intuitively, in practical settings, our
mixed policies are also preferable because they should be more difficult to guess by an
adversary.

In order to provide a more general definition of policy mixtures we introduce notion
for random mixture of devices; given two devices D1 = {(b1

i , g
1
i , T

1
i) | i ∈ L(D1)}, D2 =

98 Ann Oper Res (2011) 187:89–119

{(b2
i , g

2
i , T

2
i) | i ∈ L(D2)}, and a probability γ ∈ [0,1], we can define a new device D3 =

{(b3
i , g

3
i , T

3
i) | i ∈ L(D3)}, in which, with probability γ we screen incoming cases using

device D1, and with probability 1 − γ we screen them using device D2. Both the label
probabilities and the cost are linear in γ so that

L(D3) = {(1, j) | j ∈ L(D1)} ∪ {(2, j) | j ∈ L(D2)}, and (12a)

b3
i =

{
γ b1

j if i = (1, j), j ∈ L(D1),

(1 − γ)b2
j if i = (2, j), j ∈ L(D2),

(12b)

g3
i =

{
γg1

j if i = (1, j), j ∈ L(D1),

(1 − γ)g2
j if i = (2, j), j ∈ L(D2),

and (12c)

T 3
i =

{
T 1

j if i = (1, j), j ∈ L(D1),

T 2
j if i = (2, j), j ∈ L(D2),

for all i ∈ L(D3). (12d)

Now we can show that random mixing of policies is a meaningful operation, just as in the
case of devices. Let us now fix the action set A. If P1 = (D1, x1) and P2 = (D2, x2) are two
policies and γ ∈ [0,1] is a probability of applying P1, then the policy P3 = γP1 + (1−γ)P2

can be defined as a pair (D3, x3) where D3 is defined by (12), and

x3(i,p) =
{

γ x1(j,p) if i = (D1, j), j ∈ L(D1),

(1 − γ)x2(j,p) if i = (D2, j), j ∈ L(D2),

for all policies p ∈ A and all i ∈ L(D3).
We can also note that for such random mixing of policies the costs and the detection rates

are convex combinations given by:

C(P3) = γC(P1) + (1 − γ)C(P2),

�(P3) = γ�(P1) + (1 − γ)�(P2).
(13)

We say that a policy P = (D,x) is a deterministic policy, if for all i ∈ L(D) and all
p ∈ A we have x(i,p) ∈ {0,1}; by (8) such a policy assigns exactly one action to each label.
Although there are many possible policies, as long as the set of terminal actions is finite,
and the number of labels and tests for each device are finite, then all policies are random
mixtures of a finite number of deterministic policies.

Definition 3 Given a set of policies P , let us denote by MIX(P) the set of policies obtain-
able from P by mixing, that is

MIX(P) =
{ ∑

P∈P

λP P

∣∣∣λP ≥ 0 for all P ∈ P, and
∑
P∈P

λP = 1

}
.

2.3 Policy domination

Another important basic notion in our analysis is the domination relation between policies.

Definition 4 Given two policies, P1 and P2, we say that P2 dominates P1, if T (P2) ⊆ T (P1),
C(P2) ≤ C(P1) and �(P2) ≥ �(P1). If any of these inequalities are strict then we say that
P2 strictly dominates P1.

Ann Oper Res (2011) 187:89–119 99

Our definition of domination ensures that if P1 is dominated by P2, then we are better
off using P2 than using P1; in any case where P1 is used (even as a part of a more com-
plex policy), we can simply replace it by P2 in order to meet or exceed the same detection
performance without increasing the expected cost of inspection.

Let us observe a few more easy facts about mixtures of policies. First we show that every
undominated policy corresponds to some mixture of at most two deterministic policies.

Proposition 1 Let Q = ∑q

j=1 λjSj be a mixture of policies in S = {Sj | j = 1, . . . , q},
such that λj > 0 for all j = 1, . . . , q , q ≥ 3,

∑q

j=1 λj = 1, and the points (C(Sj),�(Sj)),
for j = 1, . . . , q , are in general position. Then Q is strictly dominated by another mixture
P ∈ MIX(S) of the policies in S .

Proof Let us denote K = conv{(C(S),�(S)) | S ∈ S}, and let us note that by the above
definitions, for any point (X,Y) ∈ K there exists a policy P = P (X,Y) ∈ MIX(S) such
that X = C(P) and Y = �(P). The points (C(Sj),�(Sj)), for j = 1, . . . , q , are in gen-
eral position, implying that there must not exist a set of three or more of these points
which are co-linear. Therefore, λj > 0 for j = 1, . . . , q , where q ≥ 3, implies that the point
(C(Q),�(Q)) ∈ K must be in the interior of K . It follows that the point (C(Q) − ε,

�(Q) + ε) is also in K , for a suitably small ε > 0. Thus, the policy P = P (C(Q) −
ε,�(Q) + ε) ∈ MIX(S) strictly dominates Q. �

Definition 5 Given a set P of policies, let us denote by U(P) ⊆ P a subset of its un-
dominated policies. Let us further denote by U∗(P) ⊆ U(P) the unique minimal subset of
undominated policies for which we have

MIX(U∗(P)) = MIX(U(P)).

It is easy to see that P ∈ U∗(P) if and only if P ∈ P and it is nondominated (not necessarily
strictly) by any of the policies in MIX(P \ {P }).

Since any random mixture of policies, P3, satisfies (13), for some pair of policies P1

and P2, and since no strictly dominated policy can be an optimal choice for any budget
value, it follows that for any finite set of policies P the function

dP (B) = max
P∈MIX(P)

{�(P) | C(P) ≤ B} (14)

is a piecewise linear concave function with break points corresponding to elements of
U∗(P); assuming meaningful policies in P , it includes only policies P whose cost C(P) ≤
C(I) = 1, and the curve is defined for all B ∈ [a, b] ⊆ [0,1], where

a = min{C(P) | P ∈ P}, and b = max{C(P) | P ∈ P}.
We may also observe that this curve is the two dimensional cost-detection projection of the
set U(MIX(U∗(P))), or in other words

{(B,d(B)) | a ≤ B ≤ b} = {(C(P),�(P)) | P ∈ U(MIX(U∗(P)))}.
When P is clear from the context we shall simply denote the curve by d(·). We say that the
set U∗(P) and the curve d(·) form the extremal frontier of the set P . Note that when the two
terminal actions, R and I , belong to P , the extremal frontier is necessarily a nondecreasing

100 Ann Oper Res (2011) 187:89–119

concave curve connecting, respectively, (0,0) to (1,1). Let us also note next that if Pi , for
i = 1,2, are two finite sets of policies, then we have

U∗(P1 ∪ P2) = U∗(U∗(P1) ∪ U∗(P2)), (15)

an easy fact, the verification of which is left for the reader.
Finally, let us conclude this section by observing, in the following proposition, that

U∗(P) can be efficiently computed for any finite set P .

Proposition 2 Assume that P is a finite set of policies given in sorted order of cost. Given
P as input, the subset U∗(P) ⊆ P can then be determined in O(|P|) time.

The proof of Proposition 2 is given in Appendix B.

3 The Inspection problem

The decision maker’s problem is to find a policy that uses the available tests and terminal
actions, which provides a high level of safety (i.e., has high detection rate), and has the
smallest possible cost. Maximizing the detection rate and minimizing cost are competing
objectives that cannot be simultaneously optimized. One approach is to minimize a single
unconstrained objective function: C(P) + πK(1 − �(P)), where K is the expected cost
of missing a bad case, and as before, π is the a priori probability of bad cases. Such a
cost K may include damage to infrastructure, the economy, and must quantify lives lost
in a catastrophic event. However, both parameters π and K may be difficult to estimate in
practice. Let us observe that not only we are unable to reliably estimate the product πK in
the objective, but also this quantity cannot be affected by our decision making. What we can
influence with our choice of a policy is the factor (1 − �(P)), and the higher the detection
rate we achieve with policy P , the smaller the expected future damage. In contrast, the
other term, C(P), represents a real operating cost together with the cost of false positives.
Typically, this cost can be reliably estimated in the long run, and it can be influenced by the
“right” choice of policy P .

Before we proceed, we make an assumption that π is negligible in comparison with 1.3

This assumption further simplifies the analysis so that the cost of a policy P given in (9) can
be rewritten as

C(P) =
∑

i∈L(D)

gi(D)[c(Ti(D)) + x(i, I)]. (16)

We note that this assumption is not necessary for our analysis, but the algebra of the proofs
becomes much simpler.

Henceforth, we consider the natural formulation of the problem of finding the policies
with maximum detection as given by (14), where B is a given budget limit for the total unit
operating cost of the policy (i.e., including also the cost of false positives), and P is the
set of all policies that can be constructed from a given set of elementary tests and terminal
actions. To enhance the practical impact of the analysis, we would like to parametrically
solve (14) for a range of different values of the budget B . This will permit a decision maker

3An alternative assumption, which may lead to a similar simplification, is that the cost of false positives is
very large compared with the operating cost of the different tests.

Ann Oper Res (2011) 187:89–119 101

to evaluate the marginal gain in safety from a particular budget increase, or determine the
lowest budget value needed to achieve a specified level of safety. The solution technique
which we introduce in the following will allow us to determine the function d(·) for the
entire range of budget values [0,1].

We are now ready to formulate our main problem and to state our main results.

The inspection problem
Input: Consider a set T of N elementary tests and the set of terminal actions A = {R,I }.
Problem: Denote by P the family of all feasible policies using the given tests and termi-

nal actions. Determine the function dP (B), for B ∈ [0,1], as defined by the optimization
problem (14).

Our results show that the function d(B) is a piecewise linear function defined by the finite set
of deterministic policies U∗(P). Furthermore, we provide an algorithm to determine these
policies, and develop an upper bound on the size of U∗(P).

4 Monotonicity of optimal policies

We are about to solve the INSPECTION PROBLEM by iteratively constructing more complex
devices and policies from simpler ones, in an optimal way. In the initial step we have the
elementary actions I and R. In the general step, we have already generated some policies
that we include in the set of available actions. Let us recall the definition of a policy P =
(D,x) which involves a device D and an assignment of actions to its labels, given by x.
Using the extended set of actions (including actions which, in turn, correspond to policies
themselves), we would like to assign some of these actions to the labels L(D) in order to
construct an optimal policy. To guide our reasoning, we first observe certain properties of
optimal policies.

Theorem 1 (Monotonicity) Assume that x∗ : L(D) × A → [0,1] satisfies (11) (no-repeats)
and yields an optimal policy P = (D,x∗) that has the largest �(P) among all policies of
the form P = (D,x) for which C(P) ≤ B . Then, for any pair of labels i and j for which
bi/gi > bj/gj and pairs of policies p,q ∈ A for which (T (p) ∪ T (q)) ∩ (Ti ∪ Tj) = ∅ and
�(p) < �(q), we must have x∗(i,p) = 0 or x∗(j, q) = 0.

Theorem 1 implies that if two different actions (or policies) can be assigned to either of
two labels, then an optimal assignment will not assign the weaker detection rate action to
the label with a higher discriminatory power (where the discriminatory power of label i is
indicated by its bi/gi ratio), if the stronger action is assigned to the label with the lower
discriminatory power.

Proof Note that the feasibility condition implies that the fraction of the bad items detected
by assigning policy r ∈ A to label k ∈ L(D) is the product bk�(r), and thus

�(P) =
∑
r∈P

∑
k∈L

x∗(k, r)bk�(r).

Analogously, the cost of policy P can be written as

C(P) = c(D) +
∑
r∈P

∑
k∈L

x∗(k, r)gkC(r).

102 Ann Oper Res (2011) 187:89–119

Now, assume to the contrary that both x∗(i,p) > 0 and x∗(j, q) > 0, and let us also choose
two suitably small positive parameters ε and ε′ which satisfy

εgi = ε′gj . (17)

Let us next define a new policy P ′ by setting

x ′(i,p) = x∗(i,p) − ε, x ′(i, q) = x∗(i, q) + ε,

x ′(j,p) = x∗(j,p) + ε′ and x ′(j, q) = x∗(j, q) − ε′,

and letting x ′(k, r) = x∗(k, r) for all other combinations of k ∈ L and r ∈ A. By our as-
sumption and by the choice of ε and ε′, these values are nonnegative, and hence they define
a new policy P ′ = (D,x ′). We have

C(P ′) − C(P) = −εgiC(p) + εgiC(q) − ε′gjC(q) + ε′gjC(p)

= (C(p) − C(q))(ε′gj − εgi)

= 0

by (17). Furthermore, we have

�(P ′) − �(P) = −εbi�(p) + εbi�(q) − ε′bj�(q) + ε′bj�(p)

= (εgi)
bi

gi

(�(q) − �(p)) − (ε′gj)
bj

gj

(�(q) − �(p))

= (εgi)

(
bi

gi

− bj

gj

)
(�(q) − �(p))

> 0.

Therefore, P ′ strictly dominates P , and hence P could not have been optimal. This contra-
dicts the choice of x∗, and thus establishes our proposition. �

Corollary 1 Given a device D = {(bi, gi, Ti) | i ∈ L(D)} and the terminal set of actions
A = {I,R}, the policy (D,x) which has maximum detection, and whose cost does not exceed
the given budget B , has an action assignment x that can be determined greedily by assigning
I to labels i ∈ L(D) in a decreasing order of bi/gi , until the budget is exhausted, and then
assigning R to all of the remaining labels in L(D).

Let us note that this optimal action assignment x has at most one label i ′ (the one with
the smallest value of bi/gi among those labels to which we assign action I with a positive
x(i, I) value) where both x(i ′, I) and x(i ′,R) may be nonzero. For all other labels i ∈ L,
x(i, ·) is either zero or one. Let us introduce xγ for γ ∈ [0,1] by defining

xγ (i ′, I) = γ, xγ (i ′,R) = 1 − γ, and

xγ (j, I) = x(j, I), xγ (j,R) = x(j,R) for all other labels j
= i ′.

Then the policies Pγ = (D,xγ) with γ ∈ {0,1} are deterministic, and we have

(D,xγ) = γP1 + (1 − γ)P0,

Ann Oper Res (2011) 187:89–119 103

for all optimal action assignments xγ and the corresponding policies (D,xγ). This proves
the following corollary.

Corollary 2 Given a device D and a set of actions A, let us denote by P(D,A) the set of
possible policies, i.e.,

P(D,A) = {(D,x) | x satisfies (8) and (11)}.

Then for every device D and for A = {I,R} we have that U∗(P(D,A)) is finite and consists
only of deterministic policies.

5 Prefixing a test: optimal assignment of actions to test labels

A main building block in our solution technique is the solution of the Test Prefix problem;
how to assign the available actions (or policies) to the labels of a test in a way that would
maximize the detection subject to a budget constraint. We formulate this problem as an LP
and suggest a greedy algorithm as a solution technique. By solving this problem parametri-
cally for all conceivable budget values, one obtains an extremal frontier of all policies that
use the given test at the root and apply a subset of the available actions.

In general, given any device t and a subset of available actions A ⊇ {I,R}, we can
create a new policy P by prefixing t to a subset of the available actions A. To simplify
the presentation we will assume that A is available for assignment to every label i ∈ L(t).
This assumption applies to the particular case which we apply in Sect. 6; prefixing a device
consisting of a single test to a set of available and undominated policies. For a specific
budget value B , the problem of finding the policy with highest detection rate, using device
t and actions A, and such that its total cost is at most B , is given by:

dP(t,A)(B) = max
∑

i∈L(t),
α∈A

bi�(α)x(i, α) (18a)

s.t.:
∑

i∈L(t),
α∈A

giC(α)x(i, α) ≤ B − c(t), (18b)

∑
α∈A

x(i, α) = 1 for each i ∈ L(t),

x(i, α) ≥ 0 for all i ∈ L(t) and α ∈ A.

(18c)

We now consider the deterministic policies P which are optimal for some value of B and
can be constructed from t by choosing a binary assignment x : L(t) × A → {0,1} satisfying
both (8) and (11). All other feasible undominated policies corresponding to a non-binary
assignment can be obtained by mixing from the ones corresponding to binary assignments
following Corollary 2. In Algorithm 1 we generate the binary assignments x(i,p) ∈ {0,1},
for all i ∈ L(t) and p ∈ A, in order to generate the corresponding set of deterministic poli-
cies Q∗. We will show that these policies uniquely define the set of undominated policies
which can be constructed from the device t and actions A, i.e., Q∗ = U∗(P(t,A)). In order
to prove Q∗ = U∗(P(t,A)) we show that Q∗ defines the piecewise-linear concave function
d(B), for B ∈ [c(t),1 + c(t)].

104 Ann Oper Res (2011) 187:89–119

Algorithm 1 TestPrefix(t,A)

Input: A device t = {(bi, gi, Ti) | i ∈ L(t)}, and a set of available actions A =
{Q0,Q1, . . . ,QM}.
Initializations:

(I1) Q∗ ← ∅, k ← 0
(I2) Cj ← C(Qj) and �j ← �(Qj) for all i ∈ L(t) and j = 0, . . . ,M

(I3) λij ← bi (�j −�j−1)

gi (Cj −Cj−1)
for all i ∈ L(t) and j = 1, . . . ,M

(I4) j (i) ← 0 for all i ∈ L(t)

(I5) x(i,Q0) ← 1, x(i,Qj) ← 0 for all i ∈ L(t) and j = 1, . . . ,M , and set P0 ← (t, x)

Assumptions:

(A1) Ti ∩ T (Qj) = ∅ for all i ∈ L(t) and j = 0, . . . ,M

(A2) 0 = C0 < C1 < · · · < CM = 1, �0 = 0, and �M = 1 for all i ∈ L(t)

(A3) U∗(A) = A, that is the points {(Cj ,�j) | j = 0, . . . ,M} form a concave curve,
implying λi1 ≥ λi2 ≥ · · · ≥ λiM for all i ∈ L(t)

Main Loop:
while ∃i ∈ L(t) such that j (i) < M do

Q∗ ← Q∗ ∪ {Pk}
k ← k + 1
(ik, jk) ← arg max

i,j

{λij | i ∈ L(t) and j (i) < j ≤ M}
x(ik,Qjk−1) ← 0, x(ik,Qjk) ← 1, and set j (ik) = jk

Pk ← (t, x)

{Comment: note that at each iteration we must have
C(Pk) = C(Pk−1) + gik (Cjk − Cjk−1)

�(Pk) = �(Pk−1) + bik (�jk − �jk−1)}
end while
Output: The set of policies Q∗.

To see the correctness of Algorithm (1), that is to see that Q∗ = U∗(P(t,A)), we provide
both an intuitive and a formal argument. Our assumptions (A1), (A2), and (A3) make sure
that it is feasible to assign any action p ∈ A to any label i ∈ L(t), that the action set A

contains the two terminal actions R and I , the action set A is ordered in an increasing
order of costs, and finally A does not contain dominated actions (note that otherwise by,
Proposition 2, the undominated set U∗(A) can be easily found in time O(|A|)).

Following these assumptions, we have

∑
i∈L(t)

M∑
j=1

(gi(Cj − Cj−1), bi(�j − �j−1)) = (1,1) (19)

implying that the set Q∗ corresponds to a sequence of points from (c(t),0) to (1 + c(t),1).
In the algorithm we sum up the vectors

(
gik (Cjk − Cjk−1), bik (�jk − �jk−1)

)

in a decreasing order of slopes. In every iteration of the main loop we choose a label i ∈ L(t),
for which we replace the assigned action Qj(i) by Qj(i)+1. Thus, at the end of the kth iter-

Ann Oper Res (2011) 187:89–119 105

ation we have j (ik) = jk , and action Qjk is assigned to label ik in policy Pk . This further
implies that

(C(Pk),�(Pk)) = (
C(Pk−1) + gik (Cjk − Cjk−1),�(Pk−1) + bik (�jk − �jk−1)

)

holds for all iterations k. Furthermore, in the kth iteration we move along the vector
(
gik (Cjk − Cjk−1), bik (�jk − �jk−1)

) ;
this can be interpreted as considering a mixture of policies Pk−1 and Pk , such that for every
small increase in the total cost of ε > 0, we get an incremental λikjk ε detection. Since at
each iteration we choose the maximum possible λikjk , intuitively it is clear that we gain
the highest level of detection for a given budget. We can also provide a formal proof for
the correctness of Algorithm 1 by showing that it yields an optimal solution to the linear
programming problem (18). First, let us note that given a budget value of B = c(t), for all
i ∈ L(t), we have P0 = (t, x) with x(i,Q0) = 1, for all i ∈ L(t), which is the only policy
that satisfies the budget constraint. Proposition 3 will demonstrate the correctness of the
algorithm for all other budget values B ∈ (c(t),1 + c(t)]. Let us note that following from
(19), for any budget value B ∈ (c(t),1 + c(t)] we have B = (1 − γ)C(Pk−1) + γC(Pk), for
some iteration k ≥ 1 and γ ∈ (0,1].

Proposition 3 Assume that our budget is B = (1 − γ)C(Pk−1) + γC(Pk) for some γ ∈
(0,1]. Let us run Algorithm 1, stop in the kth iteration and consider the assignment defined
by

x∗(i,Qj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 j = j (i),

1 − γ j = jk−1,

γ j = jk,

0 otherwise.

Then x∗ is an optimal solution of the LP (18).

Proof It is immediate to verify that x∗ is a feasible solution in the LP (18), and that it defines
the policy P ∗. Furthermore, by construction, we have equality in the budget constraint (18b).
According to the theory of linear programming, to prove that x∗ optimal, it is enough to show
a dual feasible solution, which has the same objective value. To this end, let us first consider
the dual LP:

W ∗ = min(B − c(t))y +
∑

i∈L(t)

zi

s.t.: giC(p)y + zi ≥ bi�(p) for all i ∈ L(t) and p ∈ A,

y ≥ 0,

Let us now fix y∗ = λikjk , and let

z∗
i = max

j=0,...,M

{
bi�(Qj) − giC(Qj)y

∗} . (20)

It is immediate to see that (y∗, z∗) is a feasible solution to the dual LP. Furthermore, letting
λi0 = +∞, the maximum in (20) is attained by

j (i) = max{j = 0, . . . ,M |λij ≥ y∗}.

106 Ann Oper Res (2011) 187:89–119

Now since

λi1j1 ≥ · · · ≥ λikjk ≥ max
i,j

{λij | i ∈ L(t) and j (i) < j ≤ M},

we must have

z∗
i =

{
bi�j(i) − giCj(i)y

∗ if i
= ik,

bik�jk−1 − gikCjk−1y
∗ = bik�jk − gikCjk y

∗ if i = ik.
(21)

Thus we can rewrite W ∗ = (B − c(t))y∗ + ∑
i∈L(t) z

∗
i as

W ∗ = (B − c(t))y∗ +
∑

i∈L(t)\{ik }
z∗
i + (1 − γ)z∗

ik
+ γ z∗

ik

= (B − c(t))y∗ +
∑

i∈L(t)\{ik }

(
bi�j(i) − giCj(i)y

∗)

+ (1 − γ)
(
bik�jk−1 − gikCjk−1y

∗) + γ
(
bik�jk − gikCjk y

∗)

Let us note that Algorithm 1 ensures that for all (i,p) ∈ L(t) × A, x∗(i,p) > 0 if an only if

(i,p) ∈ {(i, j (i)) | i ∈ L(t) \ {ik}} ∪ {ik, jk−1} ∪ {ik, jk}.

Therefore,

W ∗ = (B − c(t))y∗ +
∑

i∈L(t)\{ik}

(
bi�j(i) − giCj(i)y

∗)x∗(i,Qj(i))

+ (
bik�jk−1 − gikCjk−1y

∗)x∗(ik,Qjk−1) + (
bik�jk − gikCjk y

∗)x∗(ik,Qjk)

=
(

B − c(t) −
∑

i∈L(t)\{ik}
giCj(i)x

∗(i,Qj(i)) − gikCjk−1x
∗(ik,Qjk−1)

− gikCjk x
∗(ik,Qjk)

)
y∗

+
(∑

i∈L(t)\{ik }
bi�j(i)x

∗(i,Qj(i)) + bik�jk−1x
∗(ik,Qjk−1) + bik�jk x

∗(ik,Qjk)

)
.

Since x∗ is a solution satisfying the budget constraint (18b) with equality, we have

(
B − c(t) −

∑
i∈L(t)\{ik }

giCj(i)x
∗(i,Qj(i)) − gikCjk−1x

∗(ik,Qjk−1) − gikCjk x
∗(ik,Qjk)

)

= B − c(t) −
∑

i∈L(t),
p∈A

giC(i,p)x∗(i,p) = 0.

Ann Oper Res (2011) 187:89–119 107

Thus,

W ∗ =
(∑

i∈L(t)\{ik }
bi�j(i)x

∗(i,Qj(i)) + bik�jk−1x
∗(ik,Qjk−1) + bik�jk x

∗(ik,Qjk)

)

=
∑

i∈L(t),
p∈A

bi�(i,p)x∗(i,p),

and we have shown that the dual solution (y∗, z∗) has the same objective function value as
the primal solution x∗, implying that x∗ is optimal by LP duality. �

Next we analyze the runtime complexity of TestPrefix(t,A).

Proposition 4 The runtime complexity of Algorithm 1 is O(|L(t)||A| log |L(t)|).

Proof By our assumption (A3) we have all the λij values, for j = 1, . . . ,M , sorted for each
i ∈ L(t). We need to merge these ordered sets to be able to run the main loop. Merging
|L(t)| ordered sets can be done in O(|L(t)||A| log |L(t)|) time, which has to be done only
once, prior to running the main loop. All other initializations can be done in O(|L(t)||A|)
time. The proposition follows since an iteration of the main loop requires O(1) time and is
executed exactly |L(t)||A| times. �

The LP formulation (18) turns out to be a special case of the Linear Multiple Choice
Knapsack problem (LMCK); see for example (Sinha and Zoltners 1979). In that problem,
we are given a collection of mutually disjoint sets of items, called multiple-choice sets.
A convex combination of items must be selected from each set in order to maximize the
profit subject to a budgetary constraint. We can view the set of potential action assignments
to a particular label as an LMCK multiple-choice set, and each pair of a label and action,
as a knapsack item with the corresponding incremental detection and cost values. A naive
modeling of our problem as an LMCK instance would involve a number of knapsack items
that is equal to the number of available actions times the number of test labels. While our
algorithm might resemble a host of greedy algorithms developed for LMCK, the algorithm
is different than those algorithms in explicitly enumerating the entire extremal frontier of
policies, and in utilizing a computational improvement which applies to our special case
with multiple-choice sets that originate from the same single set of available actions.

Sinha and Zoltners (1979) propose a greedy algorithm and characterize the solution space
of LMCK; although their algorithm was designed to solve LMCK for a given budget value,
it could be used to parametrically solve the problem for a range of costs up to the given bud-
get value in a similar fashion as Algorithm 1. Other algorithms that can be used to generate
an entire frontier of optimal policies have been described in the literature in the context of
relaxing the integer Multiple Choice Knapsack problem. Ibaraki et al. (1978) suggest a dual
based algorithm for a particular special case of LMCK with equality constraints replaced by
inequalities.4 The complexity of their algorithm is O(k logk), where k is the total number
of items, and it can also be extended to find an entire frontier of optimal policies. Glover
and Klingman (1979) also propose an O(k logk) algorithm that specializes the dual simplex

4Note that having an element with zero cost and zero profit in each multiple-choice set corresponds to a slack
variable which allows one to solve the inequality version as a standard LMCK problem.

108 Ann Oper Res (2011) 187:89–119

method for the LMCK problem, and also results in a greedy algorithm. Zemel (1980) gener-
alizes LMCK to allow also knapsack items that are not contained in any multiple-choice set;
his algorithm involves a transformation of the LMCK instance into the Continuous sKnap-
sack Problem (CKP). The complexity of Zemel’s algorithm is O(k logkmax) where kmax is
the maximum number of items in a multiple-choice set, using an O(k) time algorithm to
solve the CKP problem. By using instead Dantzig’s O(k logk) greedy algorithm (Dantzig
1957) one could also use Zemel’s transformation to generate the entire frontier of optimal
policies. Finally, Pisinger (1995) also describes a greedy algorithm based on Sinha and Zolt-
ners (1979), which could enumerate the entire frontier of optimal policies, with a runtime
complexity of O(k logk). The linear time LMCK algorithms of Dyer (1984) and Zemel
(1984), although more efficient for a particular budget value, do not suit our purpose of
parametrically solving the problem for all conceivable budget values. The reader may refer
to Kellerer et al. (2004) for more details about LMCK and other related knapsack variants.

Let us now consider the LMCK solution techniques for solving (18): consider each pair
(i,p) ∈ L(t)×A to be a knapsack item with value bi�p , and cost giC(p), and also consider
the set of possible assignments for a particular i ∈ L(t) as a multiple-choice set. Then by
naively applying any LMCK greedy algorithm to solve (18) with the resulting k = |L(t)||A|
knapsack items one obtains a worst case complexity of O(|L(t)||A| log(|L(t)||A|)). The
runtime complexity of Algorithm 1, on the other hand, is O(|L(t)||A| log |L(t)|), which is a
substantial improvement because one generally finds that |L(t)| � |A|.

Note that if set A is not given in sorted order we only need to sort the policies p ∈ A in
increasing order of the costs C(p). The costs of the elements of the ith LMCK multiple-
choice set are simply given by the products of gi and C(p), for each p ∈ A, (i.e., the
costs of elements corresponding to the same p ∈ A differ only by scalar multiplication).
Even if we considered an unordered set A as input, then taking into account the run-
time complexity of sorting the set A, the total runtime complexity of TestPrefix(t,A)

with sorting would be O(|L(t)||A| log |L(t)| + |A| log |A|), which remains preferable to
O(|L(t)||A| log(|L(t)||A|)). Finally, if seeking the best policies which can be constructed
from the device t and set of policies A, then we only need to consider the set U∗(Q∗ ∪ A).
While we may have policies P ∈ Q∗ with C(P) > 1, these will be dominated by I ∈
U∗(Q∗ ∪ A). As a consequence we can speed up TestPrefix(t,A) somewhat by replacing
the WHILE condition in the Main Loop by “WHILE C(Pk) ≤ 1”. This change, however,
will not affect our worst case time complexity.

6 Putting the pieces together: solving the inspection problem via dynamic
programming

The TestPrefix algorithm of the previous section essentially merges |L(t)| efficient frontiers,
one for each i ∈ L(t), into a single extremal frontier of policies that use device t as the
root. We are now going to use this procedure in a recursive scheme to build the frontier
of policies, based on iteratively enriching the subsets of the available actions with more
complex policies. We will apply TestPrefix(t, A) for the case when t is a device consisting
of a single test (and thus we maintain the assumption that the set of actions A is available
for all i ∈ L(t)).

For a subset T ⊆ T of the available tests let us denote by AT the set of undominated
deterministic policies that use only tests in the set T as well as the two terminal actions I

and R. By definition, we have A∅ = {I,R}. Note that we have previously denoted the set of
tests involved in policy P as T (P). Given a set of tests T in Algorithm 2, T (P) = T for all
polices for which the set T is available. This is although in general for P = (D,x) ∈ AT ,

Ann Oper Res (2011) 187:89–119 109

Algorithm 2 Frontier(T)

1: Input: A family of tests T , and two terminal actions I and R.
2: Initializations: A∅ ← {I,R}
3: Main Loop:
4: for k = 1, . . . ,N do
5: for all subsets T ⊆ T of size |T | = k do
6: for all tests t ∈ T do
7: BT,t ← TestPrefix(t,AT \{t})
8: end for

9: AT ← U∗
(⋃

t∈T

(BT,t ∪ AT \{t})
)

10: end for
11: end for
12: Output: AT .

and t ∈ T , it may be that t /∈ Ti for all i ∈ L(D) with bi > 0. That is, the tests T are not in
fact used by all policies in AT .

Following from Proposition 3, and the fact that in each iteration of the main loop, for
all subsets of k tests, the input is a frontier corresponding to a subset of k − 1 tests which
we have generated earlier, Frontier(T) eventually generates the frontier of all policies that
may be obtained from the given set of tests T . Let N = |T |, L = maxt∈T {|L(t)|}, and
M = maxT ⊆T {|AT |}. Then the running time of this procedure can be bounded in the worst
case, as we establish in the following proposition.

Proposition 5 Frontier(T) runs in O(2NNL logLM) time.

Proof O(2NN) TestPrefix problems are solved for all 2N possible subsets of tests. Since we
maintain the action sets AT in sorted order, the runtime complexity of each of the TestPrefix
applications is bounded by O(ML logL). By Proposition 2, the complexity of UpperHull
is bounded by O(M) so that the complexity of both UpperHull and taking the union in
step 9 are dominated by the complexity of TestPrefix and the total runtime complexity is
O(2NNL logLM). �

Finally, we conclude the section with a few remarks about an extension and a practical
improvement of the algorithm. First, it might be the case that a decision maker would also
like to constrain the number of tests that can be conducted in any sequence. For example
this may be necessary in order to control delay, or may be due to some physical layout limi-
tations. The dynamic programming algorithm can be easily extended to solve the inspection
problem subject to a sequence length constraint, by simply stopping when k = |T | reaches
the specified limit. Regarding improving the practical efficiency of the algorithm, clearly, in
the kth Main Loop iteration we use the previously computed subsets of size k − 1. Thus, all
policy sets AT for |T | < k − 1 can be deleted in the kth iteration. This substantially reduces
the memory requirement of the algorithm, though it may not change the worst case time and
space complexities.

7 An upper bound on the size of the extremal frontier

There are simple bounds available for the number of binary decision trees (see e.g., Stroud
and Saeger 2003), and these bounds can be easily extended for trees with larger branching

110 Ann Oper Res (2011) 187:89–119

factors (see (1) and the discussion in Sect. 1). We now proceed to derive a tighter upper
bound on the size of the extremal frontier consisting only of the undominated deterministic
policies.

Theorem 2 Given a set of tests T , there exist deterministic policies P0 = R,P1, . . . ,PM

such that the extremal frontier of policies, obtainable from T and the terminal actions s
{I,R}, is a piecewise linear concave function defined by the breakpoints (C(Pj),�(Pj)),
j = 0,1, . . . ,M , and where

M ≤ |T |!
∏
t∈T

(1 + |L(t)|) ≤ N !(1 + L)N.

Proof As we observed above, Algorithm 2 starts with deterministic policies consisting only
of a single label and no tests. Then in step 7 each invocation of TestPrefix generates a set of
deterministic policies.

To prove the upper bound on the cardinality of the set of policies, we observe first that
|A∅| = 2. Thus, in this first stage, when invoking TestPrefix(t,A∅), we will have at most
1 + |L(t)| many actions in B∅,t , and thus

|AS | ≤
∏
s∈S

(1 + |L(s)|) ≤ |S|!
∏
s∈S

(1 + |L(s)|)

follows for all subsets S of tests having size |S| = 1. In a general step, the root test t ∈ T has
|L(t)| labels and for each label we have |AT \{t}| possible actions. Thus,

|BT,t | ≤ 1 + |L(t)||AT \{t}| ≤ (1 + |L(t)|)|AT \{t}|
follows, and consequently when these sets are merged in step 9 we get

|AT | ≤
∑
t∈T

(1 + |L(t)|)|AT \{t}| = |T |!
∏
t∈T

(1 + |L(t)|)

for all subsets T ⊆ T . �

Let us remark that in practice the number of policies corresponding to the breakpoints of
the extremal frontier is much smaller than this upper bound, and thus Algorithm 2 terminates
much faster than the running time implied by the worst case upper bounds of Theorem 2 and
Propostion 5.

8 Computational results

We demonstrate our computational results using randomly generated sensors and a set of
continuous Gaussian sensor models suggested by Stroud and Saeger (2003) and Boros et
al. (2009). We ran all computational experiments, using a MATLAB implementation of
Algorithms 2 and 1, on a machine with an Intel Xeon 3.0 GHZ CPU and 6 GB of RAM.
Using both the randomly generated sensors and the previously studied sensor models we
show that we are able to solve larger instances of the inspection problem. We are also able
to demonstrate improved detection performance when using finer discrete approximations
of the continuous sensor models suggested by Stroud and Saeger (2003) and Boros et al.
(2009).

8.1 Randomly generated tests

Computational results for randomly generated sensors (tests) are shown in Table 1, Table 2
and Table 3, for two, four and ten label configurations, respectively. The sensor cost is se-

Ann Oper Res (2011) 187:89–119 111

Table 1 Computational results, including number of vertices of the efficient frontier and running times (in
seconds), for randomly generated sensors with 2 labels. Each row corresponds to the data of 20 repeated
experiments with the same indicated configuration

Sensors Vertices Runtime

Max Avg S. Dev Max Avg S. Dev

2 5 3.85 0.81 0.72 0.055 0.16

3 9 6.10 0.07 0.13 0.06 0.02

4 15 7.55 3.14 0.18 0.16 0.01

5 28 11.30 5.67 0.53 0.45 0.04

6 43 16.20 9.25 1.46 1.18 0.13

7 73 25.55 15.99 4.11 3.12 0.39

8 212 48.35 44.19 15.43 9.23 1.99

9 323 53.25 68.55 39.91 20.99 6.23

15 1801 337.20 433.90 7807.71 3563.68 1522.28

Table 2 Computational results, including number of vertices of the efficient frontier and running times (in
seconds), for randomly generated sensors with 4 labels. Each row corresponds to the data of 20 repeated
experiments with the same indicated configuration

Sensors Vertices Runtime

Max Avg S. Dev Max Avg S. Dev

2 16 11.00 2.94 0.02 0.02 0.003

3 47 27.35 10.82 0.10 0.08 0.01

4 177 91.00 47.62 0.47 0.34 0.07

5 364 164.30 98.79 1.88 1.21 0.34

6 1127 438.55 268.67 8.33 5.22 1.58

7 4848 1385.20 1330.73 67.33 26.27 16.49

8 16416 4098.60 4119.8 578.20 149.40 134.79

9 17178 9076.50 4793.70 2214.30 1139.70 621.33

lected uniformly at random from the interval [0,0.15] while the complete inspection cost
C(I) = 1. Each bi (similarly gi) is generated sequentially, and chosen uniformly at random
from the remaining interval [0,1 − ∑

i∈L bi] (respectively from [0,1 − ∑
i∈L gi]). For each

configuration of sensor number and label number, we ran 20 repeated experiments, using
different instances of randomly generated sensors.

8.2 BKFSS Gaussian distribution sensors

Boros et al. (2009) demonstrate computational results for their linear programming formu-
lation using 4 sensors that are characterized by different Gaussian distributions of good and
bad cases. These sensors are described in more detail in Appendix A. The authors compute
minimum cost decision tree mixtures achieving a detection rate of at least 81.5%. They pro-
vide running times up to a branching factor (i.e., the maximum number of labels per test) of
7. With 7 labels per sensor, they find that the LP solver running time exceeds 1975 seconds.
They are able to run experiments with up to 8 labels and find that the minimum cost policy
with 8 labels, and overall in their experiments, has a cost of $12.06. With the same 7 labels

112 Ann Oper Res (2011) 187:89–119

Table 3 Computational results, including number of vertices of the efficient frontier and running times (in
seconds), for randomly generated sensors with 10 labels. Each row corresponds to the data of 20 repeated
experiments with the same indicated configuration

Sensors Vertices Runtime
Max Avg S. Dev Max Avg S. Dev

2 67 31.30 17.48 0.07 0.05 0.01
3 609 230.00 158.94 0.93 0.49 0.20
4 5704 1295.70 1353.35 37.35 10.22 8.44
5 9972 3322.90 2631.29 439.66 120.97 124.89
6 36910 10172.20 7897.17 8041.53 1727.36 2021.90

Fig. 5 The entire efficient frontier computed for the BKFSS sensors using the Frontier dynamic program-
ming algorithm (Algorithm 2), and the same set of seven thresholds (eight labels) used by Boros et al. (2009).
The minimum cost policy achieving detection of 81.5% corresponds to the point (0.02,0.815) on the curve
(since the cost of inspection $60 is normalized as the unit of measurement, the policy’s cost is, in fact $12.06)

per sensor we compute the entire extremal frontier consisting of 1747 deterministic policies
(i.e., vertices) in 4.25 CPU seconds. With 8 labels per sensor we are able to compute the en-
tire efficient frontier, consisting of 2748 vertices, in 7.91 seconds. Although we are unable
to replicate the experiment of Boros et al. (2009) on an the same computing platform, it is
quite clear that we are able to solve larger problems, within an order of magnitude faster
than the running times reported in Boros et al. (2009).5 This is while we enumerate the en-
tire frontier of efficient policies compared with the output of the LP formulation in Boros et
al. (2009) which consists of only a single optimal policy for a fixed value of the budget. The
efficient frontier with 8 labels per sensor is shown in Fig. 5.

We have also run experiments using a different discretization scheme of the continuous
ROC curve. We discretize the curve by choosing the break-points so that the maximum
relative error never exceeds a given error parameter ε. Following this scheme a different
number of labels may be used for each sensor. The resulting number of labels, number of

5Note that the type of LP solver used to compute the formulation in Boros et al. (2009) may also affect their
running times to a large extent. Such improvement can only be negligible compared with respect to the order
of magnitude improvement which we were able to achieve.

Ann Oper Res (2011) 187:89–119 113

Table 4 Computational results, including number of vertices of the efficient frontier and running times
(seconds), for the BKFSS sensors

ε Number of labels Vertices Runtime

1.0% (8,14,6,3) 1567 8.10
0.9% (8,14,6,3) 1589 8.26
0.8% (8,15,6,3) 1683 8.97
0.7% (9,16,6,3) 2004 11.11
0.6% (9,17,7,3) 2341 15.53
0.5% (10,19,7,3) 2811 22.05
0.4% (11,21,8,4) 5635 55.09
0.3% (13,24,9,4) 8710 118.10
0.2% (15,29,11,4) 13905 311.66
0.1% (21,40,15,6) 52477 3998.13

This table shows that we loose very little in precision and significantly save on computation time if the input
ROC curves are approximated by piecewise linear functions with only a few pieces. Applying an analogous
idea to the cost-detection curves would suggest that a controlled approximation, applied at every step of
the dynamic program, might yield computational improvements while not losing much accuracy. This line of
research has been initiated while this paper was in press. The reader may find updates at the project’s website:
http://snsrtree.rutgers.edu

Fig. 6 A pure inspection policy, using the BKFSS sensors, found using the selection of thresholds corre-
sponding to a maximum relative error of ε = 0.1% with respect to the continuous curve. This pure inspection
policy has a cost of $11.87 and a detection rate of 81.53%. The diagram shows a condensed representation
of the decision tree; the decision rules associated with each branch may contain conditions with respect to the
previous sensors encountered along the path

vertices on the efficient frontier and running time as measured by CPU seconds are shown in
Table 4. With an ε of 0.1% we find an undominated pure inspection policy with a detection
rate that exceeds 81.5% and cost of $11.87, which is lower than the cost of the least cost
policy found in Boros et al. (2009). This inspection policy is shown in Fig. 6.

9 Conclusions and future research

We have considered inspection systems as mixtures of decision trees, with no a priori con-
straint on branching factor, or number of test labels. We have shown a monotonicity property
of optimal inspection policies. We find that the monotonicity property, Theorem 1, and more
specifically Corollary 1, is constructive in finding optimal inspection policies in the special
case of assigning only terminal actions to a given device.

In general we find that optimally assigning actions to the labels of a device can be mod-
eled as a Linear Multiple Choice Knapsack problem. In the special case of interest we are

http://snsrtree.rutgers.edu

114 Ann Oper Res (2011) 187:89–119

able to solve the corresponding variation of the knapsack problem faster than previous al-
gorithms, which solve the more general problem. For diagnostic tests (e.g., sensors) that are
stochastically independent, we propose a dynamic programming algorithm, which proves
to be very fast in practice for the number of sensors that is currently being considered in
container inspection applications.

The dynamic programming algorithm’s worst case complexity is the product of an expo-
nential in the number of sensors, and a polynomial in the maximum number of vertices of
the extremal frontier (over all subsets of sensors). We are able to provide an upper bound
for the number of vertices of the extremal frontier in terms of the input of the problem that
is tighter than previous bounds given for the total number of policies (in the case of binary
decision trees) (Stroud and Saeger 2003).

The algorithm’s running time in practice is significantly faster than that of the linear pro-
gramming approach (Boros et al. 2009). This is true even though our algorithm provides an
entire curve of efficient (undominated) policies and not just the best inspection policy given
a single specific budget. Generating an entire extremal frontier of inspection policies sup-
ports sensitivity analysis, as well as the direct computation of any linear or nonlinear utility
function over the efficient set (for more details and an alternative approach of optimizing
over the efficient set of a bicriteria optimization problem we refer the reader to Benson and
Lee (1996)). Although the number of points on the extremal frontier can grow exponentially
large in the worst case, our experiments find that the size of the frontier remains manageable
in practice.

Appendix A: The BFKSS sensors

In Stroud and Saeger (2003) probability distributions of sensor readings are suggested for
the good and bad type of shipping container populations, for four different hypothetical
sensors. In Fig. 7 we show the key characteristics of these sensors, which are used in the
calculations reported in Sect. 8.2, and by Boros et al. (2009).

The sensor model (Stroud and Saeger 2003; Boros et al. 2009) assumes for each sensor
that the good and bad containers have readings distributed normally with variance 1. Read-
ings of good containers have a mean of zero for all sensors. For the first sensor half of the
containers have a mean of 4.37 and the other half has a mean of zero (which is the same as
the good containers). For the remaining three sensors the mean of bad containers is 1.53, 2.9
and 4.6. The costs of the four sensors are 0.32, 0.92, 57 and 176, respectively. The cost of
manual inspection is assumed to be $600.

Each sensor is described initially by two conditional probability distributions in the “sig-
nal space”. We convert them (numerically) to ROC curves, and then, using the specified cost,
to cost-detection curves. In choosing the breakpoints to replace these continuous curves by
a finite number of linear components, we consider the relative error of the piecewise linear
approximation of the continuous ROC curve.

Appendix B: Proof of Proposition 2

Proof of Proposition 2 We show that the following simple procedure computes U∗(P) in
the claimed running time. We first note that we execute the main loop O(M) times. Let us
also observe that we have

λ(1) > λ(2) = �(Pi2) − �(Pi1)

C(Pi2) − C(Pi1)
> · · · > λ(q) = �(Piq) − �(Piq−1)

C(Pq) − C(Pq−1)
.

Ann Oper Res (2011) 187:89–119 115

Fig. 7 The 4 sensors given in Boros et al. (2009) are described by the bad and good probability distributions
in the signal space, ROC curve and cost-detection curve. A discretization of the cost-detection curve is given
by a piecewise linear function approximating the curve, with a prespecified maximum relative error of 1%

116 Ann Oper Res (2011) 187:89–119

Fig. 7 (Continued)

Ann Oper Res (2011) 187:89–119 117

Algorithm 3 UpperHull(P)

1: Input: a set of policies P = {P1, . . . ,PM}.
2: Assumptions: an increasing order of costs, C(P1) < · · · < C(PM) (whenever inequality

is not strict, it suffices to keep the policy with the highest detection rate).
3: Initializations: Set i1 ← 1, i2 ← 2, q ← 2, t ← 3.
4: Main Loop:
5: while t ≤ M do

6: while λ(q + 1) = �(Pt)−�(Piq)

C(Pt)−C(Piq)
≥ λ(q) =

⎧⎨
⎩

�(Piq)−�(Piq−1)

C(Piq)−C(Piq−1)
if q ≥ 2

∞ if q = 1
do

7: q ← q − 1
8: end while
9: q ← q + 1

10: iq ← t

11: t ← t + 1.
12: end while
13: Output: {Pi1 ,Pi2 , . . . ,Piq }.

Otherwise, if we had λ(ij) ≤ λ(ij+1), then we would delete ij before adding ij+1 in
step 6 of the algorithm. Thus, the points corresponding to the policies of the output set
{Pi1 ,Pi2 , . . . ,Piq } indeed form a concave curve. Hence none of these policies are dominated
by a mixture of the others. Finally, in every step that a policy Piq is removed in step 6,

it is dominated by a mixture of policies Pt and Pq−1. We compute a slope
�(Pt)−�(Piq)

C(Pt)−C(Piq)
at

most twice for each element Pt ∈ P . Once when adding a policy, by assigning t to iq ,
and possibly another time when removing iq in step 6. Now, if Piq = Pt is removed in
step 6 we never access this policy again. Thus, when the algorithm terminates we must have
{Pi1 , . . . ,Piq } = U∗(P), and the total running time is O(M). �

Appendix C: A Practical speed-up of the dynamic programming algorithm

As mentioned in Sect. 6 it is possible to gain a practical speed up by not taking the union
with the previous frontier at each iteration in each stage of the dynamic programming Algo-
rithm 2. We prove the sufficiency of taking the union with {(0,0), (1,1)} instead of taking
the union with the entire frontier AT \{t} in each iteration of the algorithm.

Proposition 6 In step 9 of Algorithm 2, for all T ⊆ T ,

AT = U∗
(⋃

t∈T

BT,t ∪ AT \{t}
)

= U∗
(⋃

t∈T

BT,t ∪ {0,1}
)

= A′
T

where AT is the correct extremal frontier, using only tests in T , and which is computed by
Algorithm 2.

Proof We prove AT = A′
T by induction.

For |AT | = |A′
T | = 1, the proposition is trivially true since A∅ = {0,1}.

118 Ann Oper Res (2011) 187:89–119

In the inductive hypothesis we assume, AT \{t} = A′
T \{t} for all t ∈ T . Note that it is suf-

ficient to prove AT ⊆ A′
T ; AT is the true extremal frontier containing all undominated poli-

cies, so that applying U∗(·) (UpperHull) ensures that AT
⊂ A′
T .

To prove AT ⊆ A′
T , assume p ∈ AT but p /∈ A′

T . p /∈ A′
T implies p /∈ {(0,0), (1,1)},

so |T (p)| ≥ 1 and we can write without loss of generality p = (a,X) where a is the root
test. Further assume without loss of generality that a is fused with policies p1, . . . , pl ∈
A′

T \{a}. Then by the inductive hypothesis p1, . . . , pl ∈ AT \{a}. In step 7 of the algorithm,
a will be considered as the root test for TestPrefix with the set of actions A′

T \{a}, and thus
p ∈ BT,a . But p /∈ A′

T implies that p is dominated by another (mixed) policy q in step 9 of
the algorithm. This is a contradiction with the correctness of AT . �

References

Avenhaus, R., Stengel, B. V., & Zamir, S. (1998). Inspection games. In R. J. Aumann & S. Hart (Eds.),
Handbook of game theory, Vol. III.

Benson, H. P., & Lee, D. (1996). Outcome-based algorithm for optimizing over the efficient set of bicriteria
linear programming problem. Journal of Optimization Theory and Applications, 88(1), 77–105.

Bier, V. M., & Haphuriwat, N. (2010, to appear). Analytical method to identify the number of containers to
inspect at US ports to deter terrorist attack. Annals of Operations Research.

Boros, E., Fedzhora, L., Kantor, P. B., Saeger, K., & Stroud, P. (2009). Large scale LP model for finding
optimal container inspection strategies. Naval Research Logistics, 56(5), 404–420.

Dantzig, G. (1957). Discrete-variable extremum problems. Operations Research, 5(2), 266–277.
Dyer, M. E. (1984). An O(n) algorithm for the multiple-choice knapsack linear program. Mathematical

Programming, 29, 57–63.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
Frittelli, J. (2005). Port and maritime security: background and issues for congress. CRS Report RL31733,

US Library of Congress.
Jacobson, S. H., Karnani, T., & Kobza, J. E. (2005). Assessing the impact of deterrence on aviation checked

baggage screening strategies. International Journal of Risk Assessment and Management, 5(1), 1–15.
Glover, F., & Klingman, D. (1979). A O(n logn) algorithm for LP knapsacks with GUB constraints. Mathe-

matical Programming, 17, 345–361.
Ibaraki, T., Hasegawa, T., Teranaka, K., & Iwase, J. (1978). The multiple choice knapsack problem. Journal

of the Operations Research Society of Japan, 21(1), 59–95.
Kantor, P.B., & Boros, E. (2010). Deceptive detection methods for optimal security with inadequate budgets:

the Testing Power Index. Risk Analysis, 30(4), 663–673.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.
Madigan, D., Mittal, S., & Roberts, F. (2007). Sequential decisions-making algorithms for port-of-entry in-

spection: Overcoming computational challenges. In Proceedings IEEE Intelligence and Security Infor-
matics, New Brunswick, NJ (pp. 1–7).

Maschler, M. (1966). A price leadership method for solving the inspector’s non-constant-sum game. Naval
Research Logistics Quarterly, 13, 11–33.

Pisinger, D. (1995). A minimal algorithm for the multiple-choice Knapsack problem. European Journal of
Operations Research, 83, 394–410.

Ramirez-Marquez, J. (2008). Port-of-entry safety via the reliability optimization of container inspection strat-
egy through an evolutionary approach. Reliability Engineering & System Safety, 93(11), 1698–1709.

Sinha, P., & Zoltners, A. A. (1979). The multiple-choice Knapsack problem. Operations Research, 27(3),
503–515.

Slaughter, D. R., Accatino, M. R., Bernstein, A., Biltoft, P., Church, J. A., Descalle, M. A., Hall, J. M.,
Manatt, D. R., Mauger, G. J., Moore, T. L., Norman, E. B., Petersen, D. C., Pruet, J. A., & Prussin, S. G.
(2007). The nuclear car wash: A system to detect nuclear weapons in commercial cargo shipments.
Nuclear Instruments and Methods in Physics Research Section A, 579(1), 349–352.

Ann Oper Res (2011) 187:89–119 119

Stroud, P. D., & Saeger, K. J. (2003). Enumeration of increasing Boolean expressions and alternative digraph
implementations for diagnostic applications. In H. Chu, J. Ferrer, T. Nguyen, & Y. Yu (Eds.), Proceed-
ings of computer communication and control technologies, Vol. IV (pp. 328–333). Orlando: International
Institute of Informatics and Systematics.

Zemel, E. (1980). The linear multiple choice Knapsack problem. Operations Research, 28(6), 1412–1423.
Zemel, E. (1984). An O(n) algorithm for the linear multiple choice knapsack problem and related problems.

Information Processing Letters, 18, 123–128.

	Optimal sequential inspection policies
	Abstract
	Introduction
	Background: cases, tests, devices, actions and policies
	Definitions
	Policy mixing
	Policy domination

	The Inspection problem
	Monotonicity of optimal policies
	Prefixing a test: optimal assignment of actions to test labels
	Putting the pieces together: solving the inspection problem via dynamic programming
	An upper bound on the size of the extremal frontier
	Computational results
	Randomly generated tests
	BKFSS Gaussian distribution sensors

	Conclusions and future research
	Appendix A: The BFKSS sensors
	Appendix B: Proof of Proposition 2
	Appendix C: A Practical speed-up of the dynamic programming algorithm
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

