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Abstract

The newsboy problem is a well-known operations research model. Its various extensions have been applied
to scheduling and evaluating advanced orders in manufacturing, retail and service industries.
This paper focuses on a dynamic, continuous-time generalization of the single period newsboy problem.

Similar to the classical newsboy problem, the model may represent the inventory of an item that becomes
obsolete quickly, spoils quickly, or has a future that is uncertain beyond a single period. The problem is char-
acterized by a number of newsboys (machines) whose operations are organized and controlled in parallel. The
objective is to minimize shortage and surplus costs occurring at the end of the period as in the classical news-
boy problem, as well as intermediate production and surplus costs that are incurred at each time point along
the period. We prove that this continuous-time problem can be reduced to a number of discrete-time problems
which are determined by loose, balanced and pressing production conditions. As a result, a polynomial-time
combinatorial algorithm is derived in order to 4nd globally optimal solutions.

Scope and purpose

The classical, single-period newsboy problem is to 4nd a product order quantity that either maximizes the
expected pro4t or minimizes the expected costs of overestimating and underestimating probabilistic demand.
The basic point of the classical newsboy problem is that while a decision has to be made at the beginning of a
period of time there is no way to either get or use information (or updates) on the demand realization before
it is accumulated, i.e., before the end of the period. This very point is adopted in the paper. The importance
and applicability of such a model are widely discussed in literature. Speci4cally, the model may represent the
inventory of an item that becomes obsolete quickly, spoils quickly, or has a future that is uncertain beyond
a single period. Furthermore, the decision on inventory in the classical newsboy problem is determined in
terms of the total amount to be acquired or produced over the entire planning period. In contrast, we suggest
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a dynamic continuous-time extension that enables us to make a decision at each point of time and take into
account all associated costs during the planning horizon.
? 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The classical, single-period newsboy problem is to 4nd a product order quantity that either
maximizes the expected pro4t or minimizes the expected costs of overestimating and underesti-
mating probabilistic demand. The newsboy problem has attracted considerable attention since the
pioneering papers of Arrow et al. [1], and Morse and Kimball [2]. An extensive literature review
on various extensions of the classical newsboy problem and related inventory control models can
be found, for example, in Khouja [3] and Silver et al. [4]. Among the numerous extensions to this
problem suggested so far, one can 4nd diFerent models with respect to objectives (see, for example,
Chung [5] and Eeckhoudt et al. [6]); supplier pricing policies [7,8]; news-vendor pricing policies
and discount structures [9,10]; random yield of defective units [11] or of production capacity [12];
multi-products [13,14] and a number of subperiods to prepare for the selling season [15–17]. The
idea behind the last type of extension is that there may be many periods to produce the items, which
will be sold in a single season. Such dynamic models stress the importance of timing in producing
or purchasing the items. These models commonly utilize special product (or product family) and
demand parameters to optimize operations under limited production capacity over each subperiod
[15,17]. The former work, which deals with several families of style goods, resulted in a stochas-
tic, mixed-integer programming problem, the latter formulated the single and multi-product cases
as dynamic programming problems. Both studies suggest heuristic methods to provide an approxi-
mate solution. Matsuo [16] observed that a limitation of these works is that they include discrete
production subperiods to assign production and suggested a continuous-time heuristic approach for
improving the objective function value when approximating the optimal solution to the problem.

In this paper, we consider a continuous-time extension to the classical, single-period newsboy
problem. Parallel newsboys process the Iow of products which are then delivered to customers.
As in the classical single-period newsboy problem, the demand is assumed to be unknown during
the planning horizon, but the cumulative demand at the end of the planning horizon is known.
The objective is to adjust the production rates during the planning horizon in order to minimize
total costs. In this paper, the total costs include shortage or surplus costs occurring at the end of
the planning horizon (as considered in the classical newsboy problem), as well as the surplus and
production costs along the planning horizon. Note that in contrast to the classical model, the dynamic
continuous-time approach enables us to make a decision at each point of time.

To study this continuous-time problem, we use the maximum principle [18], which is closely
related to the widely used dynamic programming. The dynamic programming was originally de-
veloped for discrete-time problems to optimize numerically with the Hamiltonian–Jacobi–Bellman
function by looking at a 4nite step at the future. As exact timing is required, i.e., the problem is
continuous time, the step size goes to zero and the numerical search results in exponential explosion.
The maximum principle is a dynamic programming formulation developed for continuous-time prob-
lems in a form of necessary optimality conditions. The advantage of such a formulation is two-fold:
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(i) exact timing for decision variables can be sought for and (ii) analytical forms of the optimal
solutions (rather than only numerical) may be derived.

In this paper, the dynamic, continuous-time, newsboy problem, its deterministic equivalent and a
dual formulation are presented in Section 2. In Section 3 analytical properties of the optimal solutions
are derived with the aid of the maximum principle. As a result, the continuous-time, parallel-newsboy
problem is reduced to a number of discrete problems of sorting or ranking newsboys, determining
optimal production conditions and a 4nite number of switching points. The advantage of this approach
is that it enables us to develop a polynomial-time, combinatorial algorithm, which provides a globally
optimal solution as shown in Section 4. An example and computational results are presented in
Section 5. Section 6 summarizes the results.

2. Problem formulation

Since the described continuous-time newsboy problem can be straightforwardly applied to produc-
tion scheduling of parallel machines, we further introduce the problem in the context of a Iow-shop.

Consider a manufacturing system containing N parallel machines and a buFer located after the ma-
chines to collect 4nished products. The system produces a single product-type to satisfy a
cumulative demand, D, for the product-type by the end of a planning horizon, T . This system
can be described by the following diFerential equation:

Ẋ (t) =
∑
n

Unun(t); X (0) = X 0; (1)

where X (t) is the surplus level in the buFer by time t; Un is the maximum production rate of
machine n; un(t) is the production rate of machine n at time t, X 0 is a constant. In this paper, un(t)
is the decision variable, whose binary value can be instantly set within (0,1) bounds:

un(t) =

{
1 if machine n produces at time t;

0 otherwise;
n= 1; 2; : : : ; N: (2)

The product demand D is a random variable representing the yield amount of the product-type and
characterized by probability density ’(D) and cumulative distribution �(a)=

∫ a
0 ’(D) dD functions,

respectively. For each planning horizon T , there will be a single realization of D, which is known
only by time T . Therefore, the decision has to be made under these uncertain conditions before the
production starts.

Eq. (1) presents the Iow of products through the machines and buFer. The Iow is determined
by the total production rate of all machines engaged in production. The diFerence between the
cumulative production and the cumulative demand, X (T )−D, is the surplus level. If the cumulative
demand exceeds the cumulative production, i.e., if the surplus is negative, a penalty will have to be
paid for the lost sales. On the other hand, if X (T )−D¿ 0, overproduction cost is incurred at the end
of the planning horizon. Furthermore, production costs are incurred at points t when machines are
not idle and inventory holding costs are incurred at points when buFer levels are positive, X (t)¿ 0.
Note, that (1) implies that X (t)¿ 0 always holds.
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The objective is to 4nd such production rates un(t) that satisfy constraints (1)–(2) while mini-
mizing the following expected cost over the planning horizon T :

J = E

[∫ T

0

(∑
n

cnun(t) + hX (t)

)
dt + P(X (T )− D)

]
→ min; (3)

where cn is the production cost of machine n per time unit, h is the inventory holding cost of one
product per time unit, and piece-wise linear cost functions are used for the surplus/backlog costs,

P(Z) = p+Z+ + p−Z−; (4)

where Z+ = max{0; Z}, Z− = max{0;−Z}, p+ and p− are the costs of one product surplus and
shortage, respectively.

Let us substitute (4) into objective (3). Then, given probability density ’(D) of the demand, we
4nd

J =
∫ T

0

(∑
n

cnun(t) + hX (t)

)
dt

+
∫ ∞

0
p+ max{0; X (T )− D}’(D) dD +

∫ ∞

0
p−max{0; D − X (T )}’(D) dD

=
∫ T

0

(∑
n

cnun(t) + hX (t)

)
dt +

∫ X (T )

0
p+(X (T )− D)’(D) dD

+
∫ ∞

X (T )
p−(D − X (T ))’(D) dD: (5)

The new objective (5) is subject to constraints (1)–(2), which together constitute a deterministic
problem equivalent to the stochastic problem (1)–(4).

We use the maximum principle to study the equivalent deterministic problem and formulate a
dual problem [18]. The Hamiltonian is the objective for the dual problem, which according to the
maximum principle is maximized for each t by the optimal decision variables un(t). Similar to the
dynamic programming, the Hamiltonian is constructed from the time-dependent part of the primal
objective function (5) and the right-hand side of the dynamic equation (1)

H (t) =−
∑
n

cnun(t)− hX (t) +  (t)
∑
n

Unun(t) → max;

where the multiplier  (t) is referred to as a costate variable. The costate variable measures the
dynamic marginal cost which is the change in the objective function value resulting from a unit
change of X (t) at time t. According to the maximum principle,  (t) satis4es the following dual
(costate) equation  ̇ (t) =−@H (t)=@X (t), i.e.,

 ̇ (t) = h (6)
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with transversality (boundary) constraint

 (T ) =−
@[
∫ X (T )
0 p+(X (T )− D)’(D) dD +

∫∞
X (T ) p−(D − X (T ))’(D) dD]

@X (T )

=−
∫ X (T )

0
p+’(D) dD +

∫ ∞

X (T )
p−’(D) dD;

i.e.,

 (T ) =−p+�(X (T )) + p−(1− �(X (T ))): (7)

By rearranging only decision-variable-dependent terms of the Hamiltonian we obtain

Hu(t) =
∑
n

(Un (t)− cn)un(t): (8)

Since this term is linear in un(t), it can be easily veri4ed that the optimal production rate that
maximizes the Hamiltonian is

un(t) =




1 if  (t)¿ cn
Un

;

w∈{0; 1} if  (t) = cn
Un

;

0 if  (t)¡ cn
Un

:

(9)

Thus under the optimal solution, the nth machine can be idle ( (t)¡cn=Un), working at its maximum
production rate ( (t)¿cn=Un), or entering the singular regime ( (t)=cn=Un) which is characterized
by in4nite switching between 0 and 1.

3. Properties of the optimal solution

We next study the basic properties of the optimal solution. The 4rst property is the so-called
integrality property, which is due to the fact that the singular regime never exists on an optimal
trajectory as proven in the following lemma.

Lemma 1. Given that constraint (2) is relaxed as 06 un(t)6 1, n = 1; 2; : : : ; N and h �= 0, there
always exists an optimal solution, such that un(t) is equal to either 1 or 0 at each measurable
interval of time.

Proof. The proof is by contradiction. According to the optimality condition (9), the singular regime
is the only regime along which in4nite switching of the decision variable between 0 and 1 is possible
at a measurable time interval, �. Assuming the singular regime condition  (t) = cn=Un holds over �
and diFerentiating this condition, we 4nd

 ̇ (t) = 0;

which contradicts the costate equation (6),  ̇ (t) = h �= 0.
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Based on the integrality property, the unimodality of the optimal solutions is shown in the next
lemma.

Lemma 2. Let @�(X (T ))=@X (T ) �= 0. Problems (1)–(2), (5) is unimodal, i.e., there is only one
optimal value for the objective function.

Proof. First of all, note that binary constraints (2) can be relaxed as stated in Lemma 1. Eq. (1)
is linear. The objective function (5) consists of three terms. The 4rst two terms are linear as well.
The third term

R=
∫ X (T )

0
p+(X (T )− D)’(D) dD +

∫ ∞

X (T )
p−(D − X (T ))’(D) dD

is strictly convex with respect to X (T ), because @2R=@X (T )2 = (p+ + p−)@�(X (T ))=@X (T )¿ 0.
Thus, problem are (1)–(2), (5) unimodal.

Since the primal problem is unimodal, the maximum principle provides not only the necessary,
but also the suMcient conditions of optimality. Therefore, all triplets (un(t); X (t);  (t)) that satisfy
primal (1)–(2), dual (6)–(7), and (9) will minimize the objective function (3).
The next lemma shows optimal sequencing of the machines, i.e., the order in which it is optimal

for the machines to switch on for production.

Lemma 3. Given that machine n2 is switched on after machine n1, the following holds:

cn1
Un1

6
cn2
Un2

:

Proof. The proof immediately follows from optimality condition (9), Lemma 1 and the fact that the
costate variable is continuous, increasing in time function as de4ned by Eqs. (6).

Note that using the same argument as in the proof of Lemma 3, we can conclude that there is no
preemption in the system. That is, if a machine, n, is switched on at a time, tn, then the optimality
condition  (t)¿cn=Un will hold for tn ¡ t6T and, thus, the machine will not be switched oF
before the end of the planning horizon.

Henceforth, without loss of generality, we assume that all machines are ordered and numbered in
increasing order of cn=Un.

Given optimal sequencing, we now use a constructive approach to solve the problem. That is, we
4rst propose a solution, which satis4es the optimality conditions (9), and then we show that this
solution is feasible and, therefore, indeed optimal. The following three lemmas study three diFerent
types of optimal behavior. Speci4cally, Lemma 4 is devoted to the case characterized by balanced
production conditions. This implies that the relationship between the initial inventories, demand,
maximum production rate, cost and planning horizon length is such that the system has enough time
to initiate the production from a point of time, which is not necessarily at the beginning of the
planning horizon. Lemma 5 presents the case of loose production conditions when it is optimal not
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to produce at all. Finally, Lemma 6 studies pressing production conditions when it is optimal to
start the production from the very beginning of the planning horizon.

Lemma 4. Given K, 16K6N , de6ne time t1 to satisfy

−p+�

(
X 0 +

K∑
n=1

Un

(
T − cn

hUn
+

c1
hU1

− t1

))

+p−
(
1− �

(
X 0 +

K∑
n=1

Un

(
T − cn

hUn
+

c1
hU1

− t1

)))

=
c1
U1

+ h(T − t1): (10)

If 06 t1, tK ¡T , then tn=1=h(cn=Un−c1=U1)+ t1 for n=2; : : : ; K and the optimal solution is given
by: un(t) = 0 for 06 t ¡ tn; un(t) = 1 for tn6 t6T , n= 1; : : : ; K .

Proof. For primal (1) and dual (6) equations, consider the following solution which is determined
by K switching points and satis4es the optimality conditions (9):

un(t) = 0 for 06 t ¡ tn; un(t) = 1 for tn6 t6T; n= 1; : : : ; K;

X (T ) = X 0 +
K∑

n=1

Un(T − tn); (11)

 (t) =  (t1) + h(t − t1); t¿ t1;  (T ) =
c1
U1

+ h(T − t1);

 (tn) =
cn
Un

; n= 1; : : : ; K: (12)

If this solution is feasible, then according to Lemma 2 it is optimal. To verify the feasibility, we
4rst determine the switching points tn=1=h(cn=Un− c1=U1)+ t1, n¿ 1 from (12) and by substituting
them into (11) obtain

X (T ) = X 0 +
K∑

n=1

Un

(
T − cn

hUn
+

c1
hU1

− t1

)
: (13)

Next, by taking into account the transversality condition (7), we 4nd

− p+�(X (T )) + p−(1− �(X (T ))) =
c1
U1

+ h(T − t1): (14)

Finally, by substituting X (T ) from (13) into (14), we determine Eq. (10) in unknown t1. The
feasibility of this solution is ensured by 06 t1 ¡T as stated in the lemma.

To illustrate the balanced production conditions derived in Lemma 4, consider a production system
characterized by K = 2 and the uniform demand distribution

’(D) =

{
1
d for 06D6d

0 otherwise
and �(a) =

a
d
:
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Then from (10) we have

−p+

d

(
X 0 + U2

(
T − c2

hU2
+

c1
hU1

− t1

)
+ U1(T − t1)

)

+p− − p−

d

(
X 0 + U2

(
T − c2

hU2
+

c1
hU1

− t1

)
+ U1(T − t1)

)
=

c1
U1

+ h(T − t1);

i.e.,

T − p− − (p
+

d + p−

d )X 0 − (p
+

d + p−

d )U2( c1
hU1

− c2
hU2

)− c1
U1

h+ (p
+

d + p−

d )(U1 + U2)
= t1 and

t2 =
1
h

(
c2
U2

− c1
U1

)
+ t1:

Thus,

if T − p− − (p
+

d + p−

d )X 0 − (p
+

d + p−

d )U2( c1
hU1

− c2
hU2

)− c1
U1

h+ (p
+

d + p−

d )(U1 + U2)
¿ 0 and

t2 =
1
h

(
c2
U2

− c1
U1

)
+ t1 ¡T;

then u1(t) = 0 for 06 t ¡ t1; u1(t) = 1 for t16 t6T , and u2(t) = 0 for 06 t ¡ t2; u2(t) = 1 for
t26 t6T .

Note, that if K = 1, then these conditions simplify to

06T − p− − (p+=d+ p−=d)X 0 − c1=U1

h+ (p+=d+ p−=d)U1
¡T:

This implies that in order for the balanced production conditions to hold for at least one machine,
it is necessary that p− − (p+=d+p−=d)X 0 − c1=U1 ¿ 0. Furthermore, if X 0 = 0, then this condition
is, p− ¿c1=U1, i.e., the balanced production can be pro4table only if one product backlog is more
expansive than the production cost related to the production rate of the machine.

Lemma 5. De6ne time t1 to satisfy

− p+�(X 0 + U1(T − t1)) + p−(1− �(X 0 + U1(T − t1)) =
c1
U1

+ h(T − t1): (15)

If t1¿T , then it is optimal not to produce any product, i.e., un(t) = 0 for 06 t6T .

Proof. The proof is very similar to that of Lemma 4 and is due to substituting K =1 into Eq. (10)
which results in Eq. (15). Then the condition t1¿T implies that it is not optimal for even one
machine (K = 1) to switch on along the planning horizon.
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To illustrate the loose production conditions, we proceed with the example used for illustrating
the balanced conditions. Then from (15) we have

−p+

d
(X 0 + U1(T − t1) + p− − p−

d
(X0 + U1(T − t1)) =

c1
U1

+ h(T − t1);

i.e.,

p− − (p
+

d + p−

d )X 0 − c1
U1

h+ (p
+

d + p−

d )U1

= T − t1:

Thus, it is not optimal to produce at all if p−− (p+=d+p−=d)X 0−c1=U16 0. It is easy to observe,
that this condition complements the corresponding condition obtained for the balanced production
conditions. Similarly, if X 0 = 0, then the no production condition takes a simple form, p−6 c1=U1,
i.e., the backlog cost is less than or equal to the production cost related to the production rate of
the 4rst machine. Recall that the machines have to be ordered so that c1=U1 = minn{cn=Un}.

Remark 1. Eq. (15) allows us to determine optimal production or order quantity X (T ) when at
most one machine (K =1) is producing. Note that by setting inventory h and production c1 costs at
zero in Eq. (15), one can now obtain (well known in the operations research literature) economic
order quantity with limited sales period for the classical, single-period newsboy problem: �(X (T ))=
p−=(p+ + p−).

Lemma 6. Given L and K, 16L6K6N , de6ne costate  (0) to satisfy

−p+�

(
X 0 +

L∑
n=L

UnT +
K∑

n=L+1

Un

(
T − cn

hUn
+  (0)

))

+p−
(
1− �

(
X 0 +

L∑
n=L

UnT +
K∑

n=L+1

Un

(
T − cn

hUn
+  (0)

)))
=  (0) + hT (16)

and time points tn; n= L+ 1; : : : ; K to satisfy tn = 1=h(cn=Un −  (0)).
If cL=UL6  (0)¡cL+1=UL+1 and tK ¡T , then the optimal solution is given by

un(t) = 0 for 06 t ¡ tn; un(t) = 1 for tn6 t6T; n= L+ 1; : : : ; K;

un(t) = 1 for 06 t6T; n= 1; : : : ; L:

Proof. For primal (1) and dual (6) equations, consider the following solution which is determined
by K–L switching points and satis4es the optimality conditions (9)

un(t) = 0 for 06 t ¡ tn; un(t) = 1 for tn6 t6T; n= L+ 1; : : : ; K;

un(t) = 1 for 06 t6T; n= 1; : : : ; L;
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X (T ) = X 0 +
L∑

n=1

UnT +
K∑

n=L+1

Un(T − tn); (17)

 (t) =  (0) + ht;  (tn) =
cn
Un

; n= L+ 1; : : : ; K: (18)

If this solution is feasible, then, according to Lemma 2, it is optimal. To verify the feasibility,
we 4rst determine the switching points tn = 1=h(cn=Un −  (0)), n = L + 1; : : : ; K from (18) and by
substituting them into (17) obtain

X (T ) = X 0 +
L∑

n=1

UnT +
K∑

n=L+1

Un

(
T − cn

hUn
+  (0)

)
: (19)

Next, by taking into account the transversality condition (7), we 4nd

− p+�(X (T )) + p−(1− �(X (T ))) =  (0) + hT: (20)

Finally, by substituting X (T ) from (19) into (20), we determine Eq. (16) in unknown  (0). The
feasibility of this solution is ensured by

cL
UL
6  (0)¡

cL+1

UL+1
(21)

and tn ¡T as stated in the lemma.

To illustrate the pressing production conditions with the same example, we consider the case of
L= 1 (the 4rst machine works from the very beginning of the planning horizon, t1 = 0) and K = 2
(the second machine works from t2 ¡T ). Then from (16) we 4nd

−p+

d

(
X 0 + U1T + U2

(
T − c2

hU2
+  (0)

))

+p− − p−

d

(
X 0 + U1T + U2

(
T − c2

hU2
+  (0)

))
=  (0) + hT;

i.e.,

 (0) =
p− − hT − (p

+

d + p−

d )(X 0 + (U1 + U2)T − c2
h )

1 + (p
+

d + p−

d )U2

and t2 =
1
h

(
c2
U2

−  (0)
)

:

Therefore, the pressing production conditions take the following form:
If

c1
U1
6

p− − hT − (p
+

d + p−

d )(X 0 + (U1 + U2)T − c2
h )

1 + (p
+

d + p−

d )U2

¡
c2
U2

and
1
h

(
c2
U2

−  (0)
)

¡T;

then u2(t) = 0 for 06 t ¡ t2, u2(t) = 1 for t26 t6T and u1(t) = 1 for 06 t6T .

4. Algorithm

The algorithm is straightforward. It veri4es which of the three possible production conditions
studied in Lemmas 4–6 is met and sets the corresponding optimal solution. When the number of
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machines which work from the very beginning of the planning horizon, L, and the maximum number
of machines participating in production, K , are unknown, the algorithm enumerates for all possible
combinations of L and K as described below.

INPUT: N ; cn, Un, n= 1; : : : ; N ; p+; p−, h.

Loose Production Conditions

Step 1. Find n1 = argminn
cn
Un
. Check conditions of Lemma 5 for machine n1. If they hold,

then it is optimal not to produce at all, otherwise go to the next step.
Step 2. Sort and renumber the machines in non-decreasing order of cn=Un, n= 1; : : : ; N .

Balanced Production Conditions

Step 3. Set K =N . Check conditions of Lemma 4. If they are met, set the optimal solution as
shown in Step 6, otherwise go to the next step.
Step 4. If t1 ¡ 0, then go to Step 7. If t1 ¿T then go to the next step.
Step 5. Set K = K − 1.
Step 6. Check conditions of Lemma 4. If they do not hold, then go to Step 5.
Otherwise calculate the switching points tn = 1=h(cn=Un − c1=U1) + t1 for n = 2; : : : ; K and for
n = 1 by (10). Set the optimal solution as: un(t) = 0 for 06 t ¡ tn; un(t) = 1 for tn6 t6T ,
n= 1; : : : ; K .

Pressing Production Conditions

Step 7. Set L= 1, K = 0.
Step 8. If K ¿N − 1, then set L = L + 1 and K = L and go to the next step. Otherwise set
K = K + 1.
Step 9. Check conditions of Lemma 6. If they do not hold, go to Step 8. Otherwise calculate
 (0) by (16) and the switching points, tn=1=h(cn=Un−  (0)), n=L+1; : : : ; K . Set the optimal
solution as: un(t) = 0 for 06 t ¡ tn, un(t) = 1 for tn6 t6T , n = L + 1; : : : ; K ; un(t) = 1 for
06 t6T , n= 1; : : : ; L.
OUTPUT: Optimal un(t) for 06 t6T , n= 1; 2; : : : ; N .

Theorem 1. Given solutions of Eqs. (10), (15) and (16), problems (1)–(4) is solvable in O(N 3)
time. Speci6cally,

• if given t1 which satis6es Eq. (15) and t1¿T , then problems (1)–(4) is solvable in O(N ) time;
• if given t1 which satis6es Eq. (10) and 06 t1 ¡T , then problems (1)–(4) is solvable in O(N 2)

time;
• if given  (0) which satis6es Eq. (16) for L and K such that cL=UL6  (0)¡cL+1=UL+1 and

tK ¡T , then problems (1)–(4) is solvable in O(N 3) time.

Proof. According to Lemmas 1–6, the algorithm 4nds a feasible solution which satis4es the neces-
sary and suMcient optimality conditions. Therefore, this solution is globally optimal.
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Provided a feasible solution of the optimal order quantity Eq. (15) (loose production conditions),
Step 1 evidently results in an optimal solution of O(N ) complexity. Steps 3–6 treat the balanced
production conditions. Although Step 6 requires only O(N ) time, it is repeated at most N times
to determine the maximum number of machines, K , which participate in production. Therefore, the
total estimate for this case is O(N 2) time. Finally, the worst-case estimate encountered for problems
(1)–(4) is due to the pressing production conditions (Steps 7–9). If a feasible solution of the optimal
order quantity Eq. (16) can be found in O(1) time, Step 9 (of O(N ) complexity) is repeated in
double loop (at most N 2=2 times) to determine the number of machines which produce from the
very beginning of the planning horizon, L, and the maximum number of not idle machines K .

Remark 2. Theorem 1 estimates the complexity of solving problems (1)–(4) provided optimal order
Eqs. (10), (15) and (16) can be resolved analytically. However, an analytical solution is not always
available. One can readily observe that Eqs. (10), (15) and (16) are monotone in their unknowns,
which implies they can be easily solved numerically to any desired precision by simple methods
for 4nding the root of a monotone function (e.g., the dichotomous search, the golden section or the
Fibonacci search).

5. Example and computational results

To illustrate each step of the algorithm, we consider a small, 4ve-machine parallel production
system. The input data for such a system is presented in Table 1.

In addition, T = 5 time units; X 0 = 0 product units; the demand distribution is uniform, d = 24
product units; p+ = 1$ per product unit; p− = 2$ per product unit; and h = 0:1$ per product unit
and time unit.

The algorithm starts by verifying whether the case of the loose production conditions is optimal.
This is accomplished at Step 1 by determining n1 = argminn cn=Un = 3 and 4nding t3 for machine
3 to switch on. From Eq. (15) we obtain

−1
(
1(5− t3)

24

)
+ 2

[
1− 1(5− t3)

24

]
= 0:005 + 0:1(5− t3) ⇒ t3 =−3:87:

Since the obtained solution is not feasible, t3=−3:87¡ 0, the algorithm proceeds to verify whether
the case of the balanced production conditions is optimal. Step 2 sorts and renumbers the machines
in non-decreasing order of cn=Un; n = 1; : : : ; 5 as shown in Table 1. That is, the optimal ordering
of the machines is: 3-5-1-2-4 (to make the presentation clearer, we will use the original machine
numbers).

Next, at Steps 3–6, the algorithm 4nds the optimal number of working machines K by: setting
K = 5; 4; : : : ; 1 and solving Eq. (10) for t3 and verifying its feasibility. For K = 2 (i.e., machines 3
and 5 with respect to the optimal order), we obtain from Eq. (10)

−1

(
1(5− t3)

24
+

6(5− t3)− 0:01
0:1 + 0:05

0:1

24

)
+ 2

[
1− 1(5− t3)

24
+

6(5− t3)− 0:01
0:1 + 0:05

0:1

24

]

=0:005 + 0:1(5− t3) ⇒ t3 = 2:685:
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Table 1
Parameters of the 4ve-machine system

Parameters Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Un 2 5 1 2 6
cn 0.04 0.15 0.005 0.08 0.06
cn
Un

0.02 0.03 0.005 0.04 0.01

Order 3 4 1 5 2

Since, 06 t3 ¡T = 5 is feasible, the found solution is optimal. Therefore, at Step 6, the algorithm
calculates t5 = 1=h(c5=U5 − c3=U3) + t3 = 1=0:1(0:01 − 0:005) + 2:685 = 2:735 and sets the optimal
solution as

u3(t) = 0 for 06 t ¡ 2:685; u3(t) = 1 for 2:6856 t6 5;

u5(t) = 0 for 06 t ¡ 2:735; u5(t) = 1 for 2:7356 t6 5;

u1(t) = 0; u2(t) = 0; u4(t) = 0 for 06 t6 5:

Finally, to compare the results with a more classical discrete-time approach, we choose M equally
distributed time points, tm+1 = tm + -, m= 1; 2; : : : ; M , t0 = 0, tM = T and present a straightforward,
discrete-time formulation of problem (1), (2) and (5)

X (tm+1)− X (tm) = -
∑
n

Unun(tm); X (t0) = X 0; n= 1; 2; : : : ; N; m= 1; 2; : : : ; M − 1; (22)

un(tm) =

{
1 if machine n produces at time tm; n= 1; 2; : : : ; N;

0 otherwise; m= 0; 1; 2; : : : ; M − 1;
(23)

JM =-
∑
m

(∑
n

cnun(tm) + hX (tm)

)
+
∫ X (tM )

0
p+(X (tM )− D)’(D) dD

+
∫ ∞

X (tM )
p−(D − X (tM ))’(D) dD → min: (24)

With respect to the uniform distribution the objective function JM takes the following quadratic
form:

JM = -
∑
m

(∑
n

cnun(tm) + hX (tm)

)
+ p+ X 2(tM )

2d
+ p− (d− X (tM ))2

2d
→ min: (25)

Note, that the best available approach for convex programming is interior-point based and requires
O(N 6M 6) number of operations [19] to solve problems (22), (23) and (24), while the Simplex
method is characterized by an exponential worst case complexity even for linear programming.
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Table 2
Computational results

GAMS, NLP-based solution Maximum
principle-based
algorithm

N = 20
M 25 50 100 200 500 —
Computation time (s) 0.5 2 6 35 192 1
Relative deviation (%) 43.2 17.8 11.5 6.7 4.1 0

N = 40
M 25 50 100 200 500 —
Computation time (s) 1.5 7 22 85 812 2
Relative deviation (%) 79 50 21 12 5.6 0

To illustrate the theoretical estimates derived in the paper, the same problems were solved by
the suggested maximum principle-based algorithm and straightforward convex programming of (22),
(23) and (25) with GAMS software. Table 2 presents the results based on more than a hundred
runs for T =200, N =20 and 40. The comparison of the computation time for the two methods and
relative deviation R= (JM − J )=J100 from the optimal solution J found by the suggested algorithm
are obtained on PC-Pentium-III-733. The system parameters are generated randomly in the range of
[0.01, 5] for inventory, backlog and surplus costs and in the range of [1, 9] for production rates.

From Table 2, one can observe that the maximum principle-based, continuous-time approach
provides an optimal solution in virtually no time. On the other hand, when N =40 an improvement
from 12% relative deviation (rough accuracy) of the objective function to 5.6% deviation (moderate
accuracy) with the discrete-time, GAMS-based approach necessitates an increase of almost 100 times
in the computational burden.

6. Conclusion

A dynamic, continuous-time extension of the well-known, single-period newsboy problem is
introduced to incorporate such important factors as time, multiple newsboys and controllable opera-
tion rates. The problem is presented in the context of a manufacturing system consisting of parallel
machines and a buFer placed after them. With the aid of the maximum principle, the continuous-time
problem is reduced to ranking machines and de4ning whether the production conditions are loose,
balanced, or pressing. Based on this, a limited number of switching time points is calculated and
production rates are assigned over the switching points with respect to the machine ranks. We show
that if the equations derived for the optimal production order quantity can be solved analytically
and the system operates under loose production conditions, then the original problem is solvable in
O(N ) time. If the conditions are balanced it is solvable in O(N 2) time, and if the conditions are
pressing in O(N 3) time. Furthermore, even if an optimal order equation is not solvable analytically,
it is always solvable in polynomial time numerically to any required precision.
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