Information Processing Letters 112 (2012) 481-486

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Sparse weighted voting classifier selection and its linear programming

relaxations

Noam Goldberg®*, Jonathan Eckstein

4 Mathematics and Computer Science Division, Argonne National Laboratory, United States
b MSIS Department and RUTCOR, Rutgers University, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 14 January 2011

Received in revised form 8 March 2012
Accepted 8 March 2012

Available online 9 March 2012
Communicated by W.-L. Hsu

Keywords:

Machine learning
Computational complexity
Weighted voting classification
Sparsity

Integrality gap

Hardness of approximation

We consider the problem of minimizing the number of misclassifications of a weighted
voting classifier, plus a penalty proportional to the number of nonzero weights. We first
prove that its optimum is at least as hard to approximate as the minimum disagreement
halfspace problem for a wide range of penalty parameter values. After formulating
the problem as a mixed integer program (MIP), we show that common “soft margin”
linear programming (LP) formulations for constructing weighted voting classsifiers are
equivalent to an LP relaxation of our formulation. We show that this relaxation is
very weak, with a potentially exponential integrality gap. However, we also show that
augmenting the relaxation with certain valid inequalities tightens it considerably, yielding
a linear upper bound on the gap for all values of the penalty parameter that exceed a
reasonable threshold. Unlike earlier techniques proposed for similar problems (Bradley and
Mangasarian (1998) [4], Weston et al. (2003) [14]), our approach provides bounds on the
optimal solution value.
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1. Introduction

This paper examines the relationship between contin-
uous and discrete formulations of weighted voting clas-
sification problems. Consider a binary classification prob-
lem with m training samples, each consisting of ¢ real-
valued attributes, represented as a matrix A € R™*¢ whose
rows correspond to observations and whose columns cor-
respond to attributes. We are also given a vector of la-
bels y € {—1,1}™, defining a partition of the observations
M ={1,...,m} into a “positive” class Mt ={ie M | y; =1}
and a “negative” class M~ = M \ M*. Using a potentially
large set of base classifiers hj : R* — {—1,0, 1} indexed by
the set U ={1,...,u}, we would like to train a weighted
voting classifier g(x) =} ;cy Ajhj(x), for A € RY. A new
test observation x € RN is classified as either positive or
negative based on sgn(g(x)). Note that A is constrained
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to be nonnegative; this restriction is common in weighted
voting classification methods and also simplifies some of
the problem formulations below. By including additional
base classifiers of the form —h; in U as necessary, there is
no loss of generality from requiring A > 0.

Optimization models for training such classifiers typ-
ically have two components in their objectives, one re-
lated to penalizing misclassified data points and another
related to penalizing classifier complexity, or equivalently
maximizing a margin of separation; see [6, Theorem 3.1].
To obtain tractable convex optimization problems, how-
ever, commonly used formulations only use continuous
approximations, such as the L1 norm of A as a surrogate
for the number of nonzero elements in A. In this paper,
we consider the natural combinatorial formulation which
more directly penalizes misclassification error and classi-
fier complexity; its motivation may be traced back to error
(generalization) bounds for boosting algorithms [8, The-
orems 7-8]. Further, there has been significant renewed
interest in solving this problem, and closely related vari-
ants, either heuristically or approximately [14,9].
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Hence, we consider the sparse weighted voting classifier
(SWVC) problem

m
min Y "K(yiHix < 1) + ClAllo, (1)
reRY P

where C > 0 is a parameter, I(-) is the binary indicator
function, || - ||o denotes the “Ly norm” which counts the
number of nonzeroes in its argument, and H; is the ith
row of H, an m x u matrix whose elements are H;j, the
label assigned to observation i by classifier j.

Unfortunately, special cases of this problem are known
to be N'P-hard; we discuss and extend these results in
Section 3. For similar problems, Weston et al. [14], ex-
tending earlier work of Bradley and Mangasarian [4], pro-
pose minimizing a smooth, nonconvex approximation of
the step function in order to heuristically approximate
an Lo-norm penalty for A € RY. Unlike such techniques,
our approach is based on a mixed integer programming
(MIP) formulation, and provides bounds on the optimal
value. We will relate it to continuous “soft margin” linear
programming (LP) formulations of classification problems,
such as [10]

u m
min{ > Aj+D) &
j=1 i=1

diag(y)H)»—i—S}]landk,E}O]. (2)

Here, the margin of observation i is y;H;A, and margins
smaller than 1 incur a penalty proportional to the positive
parameter D.

2. MIP formulation

We now reformulate (1) as a MIP, using the binary vari-
able w; to indicate that feature j is used, and the binary
variable &; to indicate that observation i is misclassified.
Letting K be a suitably large constant, 1 denote a vector
of ones, and diag(x) denote a diagonal matrix whose ith
diagonal entry is x;, the formulation is

mm Zg,—}-CZ;L] (3a)

IEM jeu
s.t. diag(y)Hr+@mK+1)&>1 (3b)
<Kp (30)
£e{0,1}", wef{0,1}%, A>0. (3d)

We now show that (3) is equivalent to (1) for large enough
K. The magnitude of K, however, determines the (poor)
quality of the MIP LP relaxation, which we examine in Sec-
tion 4. Note that the objective values of (1) and (3) are
both bounded below by 0, and that (3) always has a fea-
sible solution (for example, A = 0, & = 1). Therefore, the
equivalence of SWVC and (3) for sufficiently large K is es-
tablished by the following:

Proposition 2.1. If K > m™/2, then every optimal solution
(&*, u*, 1*) of (3) satisfies

Zs, +CYomi= mnnZl(yle<1>+cnu|o

i=1 jeu

m
= > " 1(yiHin* < 1) + [ 2%,
i=1

Proof. By (3¢), [[A*llo < X_jey 4]- By (3b),

NgE

m
I(yiHix* <1) <) g
i=1

i=1
If & is optimal for SWVC, then

3

ZI(y,-H,-A* <1)+C|2*,
i=1

Zs +CY pl (4)

i=1 jeu

m
Zl(ylH A<D+ CllAlo<

3

We now prove the reverse inequality between the first and
last quantities. Consider the linear system in A given by

Z YiHijAj > 1 Vie M: yl’Hi)A»Z‘l‘ (5)
jeU:ij#0
Let B denote a basis matrix of this system, comprising a
submatrix of diag(y)H with column indices j € U such
that ij #0, and a subset of columns of —I (corresponding
to the slack variables when converting the inequalities to
equalities). By a standard LP basis argument, there exists a
A solving (5) such that [|A[lo < [[A]lo < m (with [[X]lo = 4]0
when C > 0 by the optimality of ). Let BY) denote the
matrix B with the column corresponding to feature j re-
placed by 1; by Cramer’s rule, A; = det(B)/det(B) for
all j for which x; > 0. Since the rank of B is at most
m, Hadamard’s bound [5, for example] yields | det(B1)| <
m™2, Since B is a basis, det(B) # 0, and as B is an integer
matrix, we have |det(B)| > 1. Hence, there exists A eRY
with 2 = Aj if A; #0 and A =0 otherwise, such that

IM1lo = lIAllo = IA]| and A < m/2 < K for all j e U. Fur-
ther, |y;H;X'| <m™/?+1 for all i € M. Let

i CHaa £/
Ei,:{l ifyiHid <1, M,j_{l if2; >0,

0 otherwise, 0 otherwise.

Then, for all i € M, yiHix' + (m™?*! + 1)g/ > 1. Thus,
(&', ', )) is feasible for (3), and

Y & =) lyiHik <1).
i=1

i=1
Therefore, by the optimality of (§*, u*

Z‘gr +CY_omj< Zfz +CY_uj

jeu jeu

, M%) for (3),

m
<) W(yiHik < 1)+ CliAfo.
i=1

Thus, all the relations in (4) hold with equality. O
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The basis arguments of the proof resemble those of
Muroga et al. [13], in particular Lemma 1 and Theorem 16;
see also [1]. The results of [13], well known in the field of
Boolean functions and logic gates, state that any weighted
majority gate with n inputs can be realized with inte-
ger weights bounded by 27"(n + 1)™*+1D/2, This analysis,
however, relies on the assumption that each column of
H has only {0,1} or {0,—1} entries, whereas we allow
mixed {—1,0,1} entries in each column. In the case H
conforms to the assumptions of [13], we note that its
results can be used to tighten the m™? bound above
to 27M*+2m™/2: however, this bound remains exponential
in m.

3. Computational complexity and inapproximability

When C = 0, minimizing the objective of (1) over
A eRY is known as the minimum disagreement halfspace
problem (MDH), and is AP-hard [12,3]. SWVC general-
izes MDH, so it is at least as hard to solve computation-
ally. Specifically, any MDH instance (H’, y") can be reduced
to (3) with H=(H' —H’), y=1y' and C = 0. We will
also refer to any solution (&, u,A) of (3), after applying
this reduction to an MDH instance (H, y), as an MDH so-
lution. Arora et al. [3] showed that MDH is inapproximable

to within any factor better than 2log' ¢ m_ for € > 0, assum-
ing NP ¢ DTIME(mPe(ogm)y - by reduction of the label
cover problem; see also [2] (DTIME(n) is the class of prob-
lems that can be solved in deterministic time n). Dinur and
Safra [7] strengthened the inapproximability of label cov-

ering to 218" *"’Mm assuming P # A’P. This strengthened
inapproximability result also applies to MDH, through the
same reduction as [3], and thus to SWVC with C =0.

If 0 <C <1/m and the input data are linearly separa-
ble, then SWVC is equivalent to a special case of another
problem that is NP-hard to approximate, minimizing the
number of relevant variables in a linear system [2]. We
omit this proof for brevity, and instead establish a more
general inapproximability result for SWVC for C = 0 (m®),
where 0 < § < 1, making use of the 208" m_gactor inap-
proximability for MDH [3,2] and the work of Dinur and
Safra [7]. Note that SWVC has the trivial solution A =0,
& =1 whenever C > m, so only smaller values of C are
of interest. For any binary vector of length at least m, de-
fine

ST@E) ={Hi|ieM*t &=0} and
ST ={H;|ieM &=0}.

We will need the following lemmas:

Lemma 3.1. Given an MDH instance (H,y) with H € {—1,
0,1}™ and y € {—1, 1}, along with any C > 0 and some
integer k > Cm, there exists a reduction, polynomial in k and u,
to an SWVC instance H' € {—1, 0, 1}™*2U gnd y' € {—1, 1},
such that (€, a, ) is an optimal MDH solution for (H, y) if and
only if the SWVC instance (H', y’, C) has an optimal solution

(8%, u*, 2%), where Y™ &% = k(X &).

Proof. Construct an SWVC instance by having y’ consist of
k concatenated copies of y, and H’' consist of correspond-

ing duplicate blocks of the form [H —H]. Let (¢*, u*, A*)
be an optimal SWVC solution for the input (H’,y’,C).
Let (£, /1,2) be an optimal MDH solution; its objective
value is zvpn = Y1; & + 074, 4 = YIL, &. Now, since
feasible solutions of MDH and SWVC always exist and
are bounded below by 0, we have only to prove that
ZvpH = Y, & = (1/k) 2?7:"1 &F. First, note that zypy <
1/k) ?1:"1 [, since otherwise there exists an MDH so-
lution with objective below zypy. To complete the proof,
it remains only to rule out the possibility that zypy <

1/k) Z?"zkl ., which we now do by contradiction. Suppose
that zypu < (1/k) Z}“:k] &". Then, the integrality of £* and
zvpu Yields zypy < % Z}":k] &' —1. Since (é, , ) is a solu-
tion of (3), S+(§) and Si(g) are linearly separable. There-
fore, since |ST(£)|4+|S™(¢)| < IM*|4+|M~| =m, a standard
LP basis argument (see also [13, Lemma 1]) implies that
S*(£) and S~ (&) are separable by some hyperplane whose
weight vector A > 0 satisfies ||A||p < m. Then, denoting the
SWVC optimal value by zswvc,

mk 2u
Zswve =) & +CY i
i=1 j=1

m 2u
<k E+CY 10 #0)
i—1 =1
<kzyvpy + Cm <k (zmpu + 1)
mk
<) & <zswye.
i1

The first two inequalities on the last line follow re-
spectively from k > Cm and zypy < (1/k) Z:":k] & — 1
Since the result is a contradiction, we must have zypy =

A/l Ymk ex =M & o

Lemma 3.2. A polynomial-time f (m)-approximation factor for
SWVCwith penalty C = C(m) € 0(m®), for some 0 < 8 < 1 and
f N, — R, implies a polynomial-time o.f (Bm1+1+8)/(1=8)y_
approximation factor for MDH for some o, 8 € O(1).

Proof. Given any MDH instance (H, y), take (H',y’,C) to
be the corresponding instance of SWVC, using the reduc-
tion of Lemma 3.1, for some integer k > Cm. Let m’ =
km denote the number of observations in this SWVC in-
stance. Let (¢§*, w*, A*) be an optimal SWVC solution for
(H',y’, C). By a standard LP basis argument (see also [13,
Lemma 1]) it must be possible to separate linearly separa-
ble sets of observations S*(£*) and S~(£*) using at most
m > |ST(E*)| + |ST(£*)| features, and this same separa-
tor also separates the duplicate observations with indices
{m+1,..., km}. Therefore, we may take (£*, u*, 1*) to be
an optimal SWVC solution such that Z?il ,u;’? <m (which
holds for all optimal solutions whenever C > 0).

Let (£, /1, %) be an optimal MDH solution, with zypy
denoting its objective value, and let (&, u,A) denote
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the hypothesized approximate SWVC solution. Now, by
Lemma 3.1, zwpu = Y 1", & = 2 Z{‘ml &, thus,

km
ZMDH < (Zé*-i-cz,u,) (Z&-FCZM])
km
f(km)<2‘§r +CZM])
< f(’,im) <I<Z$i*+Cm> < f(km)<Z$l~*+l).

i=1 i=1

The last two inequalities use respectively that Z =1 Wi i<
m, and k > Cm.

Now, by the hypothesis, C < ym?, for some constant y,
and so C < y(km)‘s since k > 1 and & > 0. For the analy-
sis above to hold, we require k > Cm; since C < y (km)?,
this condition will hold if we have k > (y (km)®)m. Solving
for k, this condition is equivalent to k > y1=3m(1+8/0-8),
Specifically, let us choose k = [y 1=3m(1+9/(0-9 1 ¢] where
€ > 0 is a small constant. Note that there exists some con-
stant 8 > 0 such that k < gm1+9/0=9 for all m. Now
select some (constant) integer T >0, and let ¢« =1+ 1/7.
If zvpn > 7, then zvpu < f(km)(1 + 1/7) Y%, ¥, and by
running the hypothesized approximation algorithm we ob-
tain an approximate

flm)(1+1/7) < f(BmTITD/A=0) 1 4 1/7)
— af(ﬂm1+(1+8)/(178))

factor solution. On the other hand, if zypy < T, then we
may obtain an exact solution in polynomial time by ex-
cluding each possible subset of observations of size less
than 7, and applying a polynomial time LP algorithm to at-
tempt to construct a separating hyperplane for the remain-
ing observations. Since the choices of C and k are polyno-
mially bounded in m, and the reduction of Lemma 3.1 is
polynomial in k and u, the entire procedure is polynomial-
time. O

Proposition 3.3. For any penalty C € 0(m?®) with 0 < § < 1,
and € > 0, the SWVC problem cannot be approximated in poly-

o - 1-
nomial time within a factor of 216 ™ unless P = N'P.

Proof. By Lemma 3.2, a polynomial-time 2l08'“m_gactor
approximation for SWVC, for some € > 0, yields a poly-
nomial-time approximation for the MDH problem with fac-

1— § -8
tor q2'0g' “BmTIEI) Ceor some a, B € 0(1). Now,

1 1—€ 1+(148)/(1-6) 14+(148)/(1=8)11-9 ] 1—€
o2los “(Bm ) L L1+ (1+8)/(1=8)] og:"m

1-€’

< 210g m

for some 0 < ¢’ < ¢, and all m > mg, for some mg > 1.
Unless P = AP, such an approximation factor contradicts
the inapproximability of MDH following from the reduc-
tion of [3,2] and the strengthened inapproximability result
for label covering in [7]. O

4. The soft margin relaxation and its integrality gap

Consider the following relaxation of (3):

,min Z&JFCZ

jeu

diag(y)HA + (mK + 1) > 1

(6)

Because it omits the constraints & < 1, p < 1, this linear
program is a weaker relaxation of (3) than the customary
linear programming relaxation; we call it the soft margin
relaxation. We now justify this terminology by showing
that (6) is equivalent to the standard soft margin classifier
LP (2) when the penalties C and D are of the appropriate
ratio.

Proposition 4.1. For every instance (H, y), (§.) is an opti-
mal solution of (2) if and only if (€, [i, 1) is an optimal solution
of (6) with C =1/D(m + 1/K)), where § =&/(mK + 1) and
L=x1/K.

Proof. Consider the map

1
w:(AE&,D —
.5, D)= ( 1<+1§ K D(m+1/1<)>
Take any D > 0 and (&, A) that is a feasible solution of (2),
and let (A, £, /1,C) = w(%,&,D). Now, diag(y)Hr +§ =
diag(y)Hr + (mK + 1)§ > 1 and & = A/K imply that
(A, &, 1) is feasible for (6), with objective value

m u
DE+CY
i=1 j=1
1 m 1 4
= i+—— S Ai/K
m1<+1§$'+D(m+l/l<); i/

D(m1<+1)< ZgﬁZk’)

Thus, @ maps feasible solutions of (2) to feasible solutions
of (6), scaling the objective by C = 1/(D(mK + 1)). Con-
versely, if one takes any solution (,&, /1) to (6) which
has & = A/K, then the inverse image of (k,g,ﬂ,C) un-
der w is a singleton {(%, &, D)} such that (A, &) is feasible
for (2), with objective value scaled by D(mK + 1). The con-
clusion then follows by noting that all optimal solutions
of (6) must have u = A/k, since the nonnegative variables
w1 j have positive objective coefficients, each appears only
in the constraint @j > A;/K, and the objective is being
minimized. O

The strength of a relaxation is typically characterized by
its gap, the ratio between its optimal objective value and
that of the original problem. In the case of the LP relax-
ation of a MIP, this ratio is called the integrality gap. For a
given input (H, y), define z(H, y) to be the optimal value
of (3), and zr(H, y) to be the optimal value of (6). We now
show that (6) is an extremely weak relaxation of (3):
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Proposition 4.2. supy ,{z(H, y)/zrR(H, y)} > mK + 1.

Proof. Consider the simple SWVC instance given by C =1
and diag(y)H = I (the identity matrix), meaning that each
base classifier covers only a single observation. Since each
observation i € M must be either classified correctly by
the single classifier u with y;H;j =1 and uj =1, or oth-
erwise & =1, this instance has an optimal integer solu-
tion of value m, where m of the w; and & variables as-
sume a value of one and all of the remaining variables
are zero. The relaxation, however, has the feasible solu-
tion & =1/(mK + 1) for i € M, and u = 0, with objec-
tive value m/(mK + 1). Thus, for this instance, we have
z(H,y)/zr(H,y) >m/(m/mK + 1)) =mK +1. O

To relate this result to the SWVC problem (1), one must
consider the magnitude of K. The lower bound on K from
Proposition 2.1 is sufficient for (3) to be equivalent to
SWVC, but may be much larger than necessary. We now
establish some necessary lower bounds on K.

Proposition 4.3. If order for (3) to be equivalent to the SWVC
problem (1) for all choices of (H, y,C) with C < q, for some
integer q € [0, m], it is necessary to have K > 2/m/41-1,

Proof. Construct an SWVC instance (H, y,C) with m ob-
servations and u = [m/q] features so that column j of
diag(y)H contains

e Oinrows 1,...,(j—1)q,
e +1inrows (j— 1)g+1,..., min{jq, m},
e —1 in all subsequent rows (if any).

By using all the features, it is possible to correctly classify
every observation, obtaining an objective value of C-u. This
is the only optimal choice, since any solution that uses r <
u features must misclassify at least (u — r)q observations,
and hence its objective value is at least

u—-r)g+C-r>C-u

(because q > C). Therefore, if (§*, u*, 1*) is optimal for (3),

we must have £* =0 and u* = 1. It then follows from (3b)
-1

that A} = 1,25 = 2,45 = 4,..., A%, 0 = 2971 Thus,

formulation (3) must have K > 2[™/41=1 or it prohibits the

optimal SWVC solution. O

As a simple example of the construction in the proof of
Proposition 4.3, setting ¢ = 1 yields an instance (H, y, C)
such that

+1 0 0 ... 0 O
-1 41 0 ... 0 ©
-1 -1 +1 ... 0
diag(y)H = ] ,
-1 -1 -1 ... +1 ©
-1 -1 -1 ... =1 +1

and C < 1, implying that we need K > 2™ for the for-
mulation to be correct. As a simple corollary of Proposi-

tions 4.2 and 4.3, we conclude that the soft margin relax-
ation gap is in general at least exponential in m/[C]. Fi-
nally, for instances with very small C, specifically C < 1/m,
one can use the results of [11,1] to demonstrate an even
larger gap. We omit these results for brevity.

5. Tightening the relaxation

We now consider adding valid inequalities to (3) in
order to strengthen its relaxation. We say that a base
classifier h distinguishes between a pair (i,i’) if it classi-
fies them differently but classifies at least one of them
correctly, eg, hj(A)) = yi # hj(Ay). Let S;y ={jeU|
hj(A;) =yi #hj(Ay)} denote the set of base classifiers that
correctly classify observation i and distinguish it from i’.
Consider the following inequality for each pair of observa-
tions (i,i') e ® =M+ x M7 )UM~ x MT):

S+ Yy w1 (7)

jeSiTi/

The interpretation of this inequality is that either we mis-
classify at least one of the of the observations i or i/, or
we need to distinguish between the two using at least one
of the distinguishing features in S; ;.

Proposition 5.1. The inequalities (7) are valid, that is, they hold
for all integer-feasible solutions of (3).

Proof. Take any (i,i'’) e M™ x M. If & + &y > 1, then (7)
clearly holds. Otherwise, i € M™ and & = & = 0 imply that
> jeu Hijhj > 1. Thus, hj(Aji; > 0 for some je U; 4j >0
and hj(Aj)) =y; =1 imply 0 < A;j/K < uj =1. The proof
for (i,i’) e M~ x MT is similar. O

We now consider the tightened relaxation consisting of
the linear program (6), augmented by all possible cutting
planes of the form (7). We denote the optimal objective
value of the tightened relaxation by zrr(H, y).

In typical learning applications of SWVC, each feature
added to the model should explain at least a single addi-
tional observation, implying that C > 1. In this case, it is
straightforward to prove a bound on the gap of the tight-
ened relaxation:

Proposition 5.2.If C > 1, then z(H, y)/ztr(H, y) < m.

Proof. Consider an optimal solution (&, u, A) of the tight-
ened relaxation. Now, if C > 1, the cuts (7) assure that
ZR(H, y) = 2001 &+ C X jey 4y 2 & +8 + Djes,, K > 1,
for some (i,i’). On the other hand, £ =1, =0, A =0
is feasible for (3) and attains the objective value m, so
zZ(H,y)<m. O

Thus, the cuts (7) provably tighten the soft margin re-
laxation (6), equivalent to the standard soft-margin linear
program (2), reducing its gap from exponential to a small
polynomial in the input.

We now make some remarks about the practical appli-
cation of the tightened relaxation: first, note that since the
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number of cuts (7) is at most 2|M*||M~|, the polynomial-
time solvability of LP implies that the solution of the tight-
ened relaxation may be found in time polynomial in the
input. Although the total number of cutting planes is in
0 (m?), significant practical improvements are possible by
using only a carefully selected subset, for example by iter-
atively identifying violated inequalities (7), adding them to
the formulation, and reoptimizing. Finally, in [9], we sug-
gested a variant of the tightened relaxation formulation,
preferable for numerical reasons, which dispenses with the
large constant K and constrains ||A||; = 1, while fixing the
margin equal to a small parameter. We used this formu-
lation to evaluate the practical effectiveness of inequalities
of the form (7) within a cut and column generation boost-
ing algorithm.

6. Conclusion

Generalization error bounds of weighted voting classi-
fier techniques can be expressed in terms of the training
data errors and number of nonzero entries of the weight
vector; see [8] and references therein. Our results here ex-
tend previous computational complexity results that only
addressed the problems of minimizing each quantity in-
dependently of the other. Our extension shows that min-
imizing the number of misclassifications plus a penalty
proportional to the number of nonzeroes is equally hard
for a large range of penalty parameter values; this result
is significant because the problem possesses a trivial so-
lution for a sufficiently large penalty. We related an LP
relaxation of our problem to previous algorithmic work,
and proved an exponential lower bound on its integrality
gap. On the other hand, we were able to prove a linear up-
per bound on the gap when the formulation is augmented
by a polynomial number of novel inequalities. We believe
that these results have practical significance for the de-
sign of sparse weighted voting classifier algorithms: in [9],
we implemented a similar approach to a closely related
formulation, with empirical results showing competitive
classification performance while maintaining weight vec-
tor sparsity. This technique was less sensitive to parameter
settings than prior methods omitting inequalities of the
form (7).
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